66
Etude du déterminisme des variations interannuelles des échanges carbonés des écosystèmes forestiers européens: une approche basée sur la modélisation des processus Nicolas Delpierre Nicolas Delpierre (dir. Eric Dufrêne) Saclay, 14 décembre 200

Nicolas Delpierre (dir. Eric Dufrêne)

  • Upload
    noe

  • View
    48

  • Download
    0

Embed Size (px)

DESCRIPTION

Etude du déterminisme des variations interannuelles des échanges carbonés des écosystèmes forestiers européens: une approche basée sur la modélisation des processus. Nicolas Delpierre (dir. Eric Dufrêne). Saclay, 14 décembre 2009. Terrestrial vegetation modulates atmospheric [CO 2 ]. - PowerPoint PPT Presentation

Citation preview

Page 1: Nicolas Delpierre (dir. Eric Dufrêne)

Etude du déterminisme des variations interannuelles des échanges carbonés des

écosystèmes forestiers européens: une approche basée sur la modélisation des

processusNicolas DelpierreNicolas Delpierre (dir. Eric Dufrêne)

Saclay, 14 décembre 2009

Page 2: Nicolas Delpierre (dir. Eric Dufrêne)

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Fossil fuels + Land Use Change

Le Quéré et al., 2009

Page 3: Nicolas Delpierre (dir. Eric Dufrêne)

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Fossil fuels + Land Use ChangeAtm increase

Le Quéré et al., 2009

Page 4: Nicolas Delpierre (dir. Eric Dufrêne)

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Ocean30%

Fossil fuels + Land Use ChangeAtm increaseOcean uptake

Le Quéré et al., 2009

Page 5: Nicolas Delpierre (dir. Eric Dufrêne)

Terrestrial vegetation modulates atmospheric [CO2]

2

1960 1970 1980 1990 2000 2010

Flu

x (G

t C

y-1

)

0

2

4

6

8

10

Atmosph.40%

Ocean30%

Vegetation30%

Vegetation C uptakeVegetation C uptake accounts for most of the IAV

Forests ~60% of vegetation uptake

Fossil fuels + Land Use ChangeAtm increaseOcean uptakeVegetation uptake

Le Quéré et al., 2009

Page 6: Nicolas Delpierre (dir. Eric Dufrêne)

FLUXNETMonitoring the vegetation / atmosphere C exchanges

Forest sitesNon-forest sites

8CARBOEUROPE CARBOEUROPE

networknetwork

Page 7: Nicolas Delpierre (dir. Eric Dufrêne)

CARBOEUROPEEcological gradient

Coniferous forests

Pinus spp.Picea spp.

Deciduous forests

Fagus sylvaticaQuercus spp.

Evergreen Broadleaves

Quercus ilex

Mixed forests

9

Page 8: Nicolas Delpierre (dir. Eric Dufrêne)

CARBOEUROPEAnnual NEP sums

Boreal (Pinus)

Temperate (Picea)

Temperate (Fagus)

Mediterranean (Q.ilex)

2001 2003 2005 2007

2001 2003 2005 2007

2001 2003 2005 2007

2001 2003 2005 200711

Page 9: Nicolas Delpierre (dir. Eric Dufrêne)

R²=0.40R²=0.40 R²=0.80R²=0.80

CARBOEUROPEExplaining Intersite variations of the C balance

Water balance Temperature

GPP(gC / m² / y)

12

One color =

One site

Southern <52°N Northern >52°N

adapted from Reichstein et al., 2007

Page 10: Nicolas Delpierre (dir. Eric Dufrêne)

CARBOEUROPEExplaining Intersite variations of the C balance

R²=0.40R²=0.40 R²=0.80R²=0.80

R²=0.30R²=0.30 R²=0.70R²=0.70

GPP(gC / m² / y)

Reco(gC / m² / y)

12

Water balance Temperature

Southern <52°N Northern >52°N

adapted from Reichstein et al., 2007

Page 11: Nicolas Delpierre (dir. Eric Dufrêne)

CARBOEUROPEExplaining Intersite variations of the C balance

R²=0.40R²=0.40 R²=0.80R²=0.80

GPP(gC / m² / y)

R²=0.30R²=0.30 R²=0.70R²=0.70

Reco(gC / m² / y)

R²<0.10R²<0.10 R²=0.20R²=0.20

NEP(gC / m² / y)

12

What about interannual variations

???

Southern <52°N Northern >52°N

Water balance Temperatureadapted from Reichstein et al., 2007

Page 12: Nicolas Delpierre (dir. Eric Dufrêne)

CARBOEUROPEExplaining Interannual variations of the C balance

GPP(gC / m² / y)

Reco(gC / m² / y)

NEP(gC / m² / y)

SignificantRelationships

5 sites over 25

SignificantRelationships

3 sites over 25

SignificantRelationships

4 sites over 25

13

Southern <52°N Northern >52°N

Water balance Temperature

Page 13: Nicolas Delpierre (dir. Eric Dufrêne)

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

Empirical vs. Process-based models

14

Statisticalmodels

Page 14: Nicolas Delpierre (dir. Eric Dufrêne)

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

CASTANEACASTANEAClimateClimate

Biological Biological driversdrivers

?? ?? To be To be

tested ??tested ??

Empirical vs. Process-based models

14

Statisticalmodels

Process

Basedmodel

Page 15: Nicolas Delpierre (dir. Eric Dufrêne)

  Info used Logical linkInterannual

Climate indexes

Annual climate correlative

CASTANEACASTANEAClimateClimate

Biological Biological driversdrivers

explanatory Proces

sBasedmodel

Empirical vs. Process-based models

14

Quantify the influences of ClimateClimate and Biological driversBiological driversoperating at several timescalesseveral timescales to determine the interannual variations of GPP, Reco and NEP

Statisticalmodels

Page 16: Nicolas Delpierre (dir. Eric Dufrêne)

3)Availability of Statistical tools for signal deconvolution

Criteria for using CASTANEA as a deconvolution tool

1) Biological realism of the simulated processes

2) Accuracy of flux simulations

15

Seasonality of photosynthesis in conifers Seasonality of photosynthesis in deciduous species

- Spring phase- Autumn phase

Evaluation of data quality Model validation at multiple time scales

SA technique revealing seasonal influences SA technique revealing influences at multiple time scales

Page 17: Nicolas Delpierre (dir. Eric Dufrêne)

4. Influence of climate and biological drivers

across time scales

OUTLINEOUTLINE

2. Modelling canopy senescence in deciduous

forests

16

1. Materials & methodsAn overview of the CASTANEA model

3. Model Validation

Page 18: Nicolas Delpierre (dir. Eric Dufrêne)

1. Materials & methodsAn overview of the CASTANEA model

Page 19: Nicolas Delpierre (dir. Eric Dufrêne)

CO2

Solar radiation

temperature

Radiation interceptionGlobal PAR

PhotosynthesisStomatal Cond.

CASTANEAmodel

Dufrêne et al., 2005

Transpiration

Water vapour

GP

P

17

Page 20: Nicolas Delpierre (dir. Eric Dufrêne)

Solar radiation

temperature

Water vapour

Radiation interceptionGlobal PAR

Photosynthesis

Precipitations

Canopy interception

Throughfall

Stem flow

Litter

Surface

Root zone

drainage

Soil evaporation

TranspirationCanopy

evaporation

CO2

Stomatal Cond.

GP

P

CASTANEAmodel

Dufrêne et al., 2005 17

Page 21: Nicolas Delpierre (dir. Eric Dufrêne)

Solar radiation

temperature

Water vapour

Radiation interceptionGlobal PAR

Photosynthesis

Precipitations

Canopy interception

Throughfall

Stem flow

Litter

Surface

Root zone

Soil evaporation

Transpiration

Carbon AllocationC leaves

C coarse roots

C fine roots

Growth Respiration

C litter

C surface

C deep

HeterotrophicRespiration

CO2

Canopy evaporation

drainage

Stomatal Cond.

GP

P

Rec

o

C aerial wood

C reserves Maintenance Respiration

CASTANEAmodel

Dufrêne et al., 2005 17

Page 22: Nicolas Delpierre (dir. Eric Dufrêne)

CASTANEA Modelling the C balance of European forests

Coniferous forests

Hyytiälä(Boreal Pine)

Tharandt(Temperate Spruce)

Evergreen Bleaves

Puéchabon(Mediterranean Q. ilex)

Deciduous forests

SoroeHainich (Temperate Beech)Hesse

18

Page 23: Nicolas Delpierre (dir. Eric Dufrêne)

2. Modelling canopy

senescencein deciduous

forests

Page 24: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)

Page 25: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Page 26: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Page 27: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

19

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Page 28: Nicolas Delpierre (dir. Eric Dufrêne)

OakOakBeechBeech

RENECOFOR observationsSenSen9090 = 90% x 36 trees = 90% x 36 trees

  Sites n MAT (°C) Alt (m) Sen90

Beech 18 159 9.8 400 20 October

Autumn phenology The RENECOFOR dataset (1997-2006)

20

Page 29: Nicolas Delpierre (dir. Eric Dufrêne)

Driver Effect References

TemperaturesTemperatures

Addicott, 1968

Low temperatures ++ Schnelle, 1952

Schulze, 1970

PhotoperiodPhotoperiod

Long days ++ / / --Addicott, 1968Seyfert, 1970Chuine, 2001

Estrella & Menzel, 2006

Short days ++ / / --Other potential driversOther potential drivers

•Water balance•Mineral deficits

•atmospheric pollution•parasites…

Designing a bioclimatic modelLiterature review

21

Page 30: Nicolas Delpierre (dir. Eric Dufrêne)

8

10

12

14

16

Rel

ati

ve

sen

esc

ence

Tem

per

atu

reDesigning a bioclimatic model

Model formulation

22

Model parameters

Rel

ativ

e se

nes

cen

ceT

emp

erat

ure

Day

len

gth

Senescence initiation date Base temperature Critical T sum

Model formulation

non-linear T x DayLength effects

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0Jul Aug Sep Oct Nov Dec

Jul Aug Sep Oct Nov Dec

Tbase

Page 31: Nicolas Delpierre (dir. Eric Dufrêne)

  Beech

 RMSE ( days )

ME (%)

Null model 16a 0

White et al. 15a 10

Jolly et al. 15a 7

This study 13b 33

BeechBeech

Fitting subsetValidation subset

Senescence model assessment (1)

23

Prediction error =13 days(Observation resolution = 7 days)

Observations

Sim

ula

tio

ns

Delpierre et al., 2009

Page 32: Nicolas Delpierre (dir. Eric Dufrêne)

 RMSE (days)

ME (%)

Beech 2 46

Senescence model assessment (2)

24

BeechBeech

Yel

low

ing

dat

e (D

oY

)

Validation statistics

Important reduction of the prediction error

Observation uncertainty averaging Reduced contribution of extreme dates

1997 1999 2001 2003 2005

observations

simulations

Page 33: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

N resorption

Sep Oct Nov Dec

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Page 34: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

N resorption

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Over

estim

ation

Page 35: Nicolas Delpierre (dir. Eric Dufrêne)

Canopy senescence Original modelling scheme

Hesse forestFagus sylvatica

49°N

Leaf fall

25

Sep Oct Nov Dec

Sep Oct Nov Dec

Modelled NEP

Davi et al. (2005)Sep Oct Nov Dec

Impro

ved

Impro

ved

N investment

xN resorption

Page 36: Nicolas Delpierre (dir. Eric Dufrêne)

3. Model Validation

Page 37: Nicolas Delpierre (dir. Eric Dufrêne)

Model validation across time scalesDAILYDAILY

Hyytiälä(Pinus)

R²=0.92bias= +0.11

Tharandt(Picea)

R²=0.91bias= +0.10

Puéchabon(Q. ilex)

R²=0.74bias= +0.21

Hainich(Fagus)

R²=0.95bias= -0.08

2000 2001 2002 2003 2004 2005 2006 2007

2000 2001 2002 2003 2004 2005 2006 2007

26

Page 38: Nicolas Delpierre (dir. Eric Dufrêne)

Model validation across time scalesANNUALANNUAL

FIHyy RMSE=13, r²=0.82DETha RMSE=66, r²=0.51FRPue RMSE=59, r²=0.82

CASTANEA reproduces 36% - 82% of C flux interannual variance36% - 82% of C flux interannual variance

Model validated Model challenged

27

Page 39: Nicolas Delpierre (dir. Eric Dufrêne)

4. Influence ofclimate & biological

driversacross time scales

Page 40: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 28

Page 41: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 29

Jan Jul DecApr Oct

Mean annualpattern

Page 42: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 30

Page 43: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 30

Page 44: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007 31

Page 45: Nicolas Delpierre (dir. Eric Dufrêne)

Defining Flux IAV across time scales

GPP Tharandt (Picea abies) 2000-2007

inte

gra

tion

31

Page 46: Nicolas Delpierre (dir. Eric Dufrêne)

Influence on Influence on GPPGPP

Influence on Influence on RecoReco

Climate drivers

Incident Radiation

Temperature

Relative Humidity

Soil water content

Biological drivers

Thermal acclimation

Canopy dynamics (LAI)

Woody biomass

Soil C stock

No effect

No effect

No effect

No effect

No effect

32

Conifers

Conifers

Page 47: Nicolas Delpierre (dir. Eric Dufrêne)

dailycycle

annualcycle

Climate and biological drivers interact at different time scales

Climate drivers Biological drivers

Var

ian

ce i

nd

ex

Var

ian

ce i

nd

ex

Global radiationTemperatureVPD

Leaf Area Index

annualcycle

33

hour day month year hour day month year

Page 48: Nicolas Delpierre (dir. Eric Dufrêne)

dailycycle

annualcycle

Climate and biological drivers interact at different time scales

Climate drivers Biological drivers

Var

ian

ce i

nd

ex

Var

ian

ce i

nd

ex

Global radiationTemperatureVPD

GPP

Leaf Area Index

GPP

annualcycle

Climate modulates short-term flux variability Climate + Biological drivers modulate flux IAV 33

hour day month year hour day month year

Page 49: Nicolas Delpierre (dir. Eric Dufrêne)

Constrained simulations

blue = « mean Rg » referencegrey = original flux (year 2000)

Single driver contribution to flux modulationSingle driver contribution to flux modulation

Day of Year

Day of Year

Hyytiälä, Boreal Pine

34

Proper Rg effect on GPP

Page 50: Nicolas Delpierre (dir. Eric Dufrêne)

Constrained simulations

8 years of dailyGPP anomalies due to radiation

8 years of dailyGPP anomalies

due to Water Stress

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

35

Page 51: Nicolas Delpierre (dir. Eric Dufrêne)

0.000

0.002

0.006

0.008

0.010

OWT variance decomposition

Orthonormal wavelet transform

(Haar basis)

Localize and compare residual signal variances

across time scales

Residual signals variance spectra

36

d w m s y >y

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

Page 52: Nicolas Delpierre (dir. Eric Dufrêne)

0.0

0.2

0.4

0.6

0.8

1.0

OWT variance decomposition

37

Residual signals relative influences

Orthonormal wavelet transform

(Haar basis)

calculate relative influencesof both drivers

d w m s y >y

2000 2002 2004 2006

2000 2002 2004 2006

Hyytiälä, Boreal Pine

Hyytiälä, Boreal Pine

Page 53: Nicolas Delpierre (dir. Eric Dufrêne)

decreasing influence of climate drivers at higher timescales

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

d w m s y >y

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

38

RglobalRglobal + LAILAI + droughtdrought control GPP annual IAV

Page 54: Nicolas Delpierre (dir. Eric Dufrêne)

decreasing influence of climate drivers at higher timescales

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

39

RglobalRglobal + LAILAI + droughtdrought control GPP annual IAV

RglobLAI

REWAccP

Page 55: Nicolas Delpierre (dir. Eric Dufrêne)

Significant contribution of biological driversbiological drivers to GPP-IAV modulation

Deconvolution across time scales

Hyytiälä (Boreal Pine)GPP

clim

ate

clim

ate

bio

log

ica

lb

iolo

gic

alAccP

39

Climatedrivers

60%

Biologicaldrivers

40%

Page 56: Nicolas Delpierre (dir. Eric Dufrêne)

AccP45%

AccP9%

GPP-IAV controls in conifers(2000-2007)

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

Stronger influence of thermal acclimationthermal acclimation at the warmer site !!!

40

+9°C+9°C +4°C+4°C

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Page 57: Nicolas Delpierre (dir. Eric Dufrêne)

Thermal acclimation AccPThermal acclimation AccP

Jan Jul Nov

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

GPP-IAV controls in conifers(2000-2007)

40

+9°C+9°C +4°C+4°C

AccP45%

AccP9%

Ac

cP

0.0

0.2

0.4

0.6

0.8

1.0

AccP constraint ++++++AccP constraint ++

Page 58: Nicolas Delpierre (dir. Eric Dufrêne)

Acc

P

0.0

0.2

0.4

0.6

0.8

1.0Thermal acclimation AccPThermal acclimation AccP

Jan Jul Nov

AccP constraint ++++++AccP variations ++

AccP constraint ++AccP variations ++++++

Hyytiälä (Boreal Pine)GPP

Tharandt (Temperate Spruce)GPP

GPP-IAV controls in conifers(2000-2007)

40

+9°C+9°C +4°C+4°C

AccP45%

AccP9%

Page 59: Nicolas Delpierre (dir. Eric Dufrêne)

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

Contrast of thermal acclimation influence in conifers

Strong influence of REW• Recurrent in Puéchabon

• 2003 drought in Hainich

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW

Page 60: Nicolas Delpierre (dir. Eric Dufrêne)

RecoReco

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

Temperature vs Soil Water control

Low influence of Biomass

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW REW

REW

Temp

Temp

Page 61: Nicolas Delpierre (dir. Eric Dufrêne)

RecoReco

HyyHyyBoreal Boreal PinusPinus

ThaThaTemperateTemperate

PiceaPicea

HaiHaiTemperateTemperate

FagusFagus

PuePueMedit.Medit.Q. ilexQ. ilex

RglobTair

VPDVPD

REW

AccPLAIBwood

CsoilCsoilClim

ate

Bio

log

ical

Bio

log

ical

Flux-IAV controls in European forests (2000-2007)

41

GPPGPP

REW

REW

AccP

LAI Rg

REW REW

REW

Temp

Temp

NEPNEP

Rg

AccP Temp

REW

REWTemp

NEP control unpredictable from

elementary flux responses

Compensation effects

noticeable

Page 62: Nicolas Delpierre (dir. Eric Dufrêne)

CONCLUSION

Process-based modelsallow to address the determinism of C fluxes

from detailed processes to ecosystem scale

from hourly to decadal time scale

42

Page 63: Nicolas Delpierre (dir. Eric Dufrêne)

CONCLUSION

42

Increased contribution of Biological Drivers

at higher timescales

Constraint vs. Modulation

Unpredictability of NEP controls from GPP/Reco controls

Process-based modelsallow to address the determinism of C fluxes

Page 64: Nicolas Delpierre (dir. Eric Dufrêne)

CONCLUSION

42

Limits of the approach

Poor quality of Eddy Covariance nighttime fluxes Are our models reliable ?

(van Gorsel et al., 2009)

Model challenged at some sites (Hesse, Soroe)Are we missing something ?

Process-based modelsallow to address the determinism of C fluxes

Page 65: Nicolas Delpierre (dir. Eric Dufrêne)

PERSPECTIVES

43

Deconvolution methodology on longer time series

for an increased number of sites

Model developmentsSupra-decadal simulations

age effects (C allocation) acclimation (e.g. respiration, phenology)

Carbon-Water-Nitrogen coupling

Genericity

Page 66: Nicolas Delpierre (dir. Eric Dufrêne)

Merci