6
P UBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE R ENNES A DAM JAKUBOWSKI A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Publications de l’Institut de recherche mathématiques de Rennes, 1989-1990, fascicule 1 « Probabilités », p. 69-73 <http://www.numdam.org/item?id=PSMIR_1989-1990___1_69_0> © Département de mathématiques et informatique, université de Rennes, 1989-1990, tous droits réservés. L’accès aux archives de la série « Publications mathématiques et informa- tiques de Rennes » implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

  • Upload
    dangque

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

ADAM JAKUBOWSKIA Non-Central Functional Limit Theorem for QuadraticForms in Martingale Difference SequencesPublications de l’Institut de recherche mathématiques de Rennes, 1989-1990, fascicule 1« Probabilités », p. 69-73<http://www.numdam.org/item?id=PSMIR_1989-1990___1_69_0>

© Département de mathématiques et informatique, université de Rennes,1989-1990, tous droits réservés.

L’accès aux archives de la série « Publications mathématiques et informa-tiques de Rennes » implique l’accord avec les conditions générales d’utili-sation (http://www.numdam.org/legal.php). Toute utilisation commerciale ouimpression systématique est constitutive d’une infraction pénale. Toute copieou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programmeNumérisation de documents anciens mathématiques

http://www.numdam.org/

Page 2: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

69

A Non-Central Functional Limit Theorem for Quadratic Forms

in Martingale Difference Sequences

Adam Jakubowski* Uniwersytet Mikolaja Kopernika, Instytut Matematyki

Torun, Poland.

Abstract

For quadratic forms with nulls on the diagonal the partial-sum process is both a martingale and a stochastic integral. Using corresponding tools we derive a result on the convergence to the double Wiener-It o integral.

Let { A n = ( a J j ) } n € N be a sequence of infinite matrices with nulls on the diagonals:

< t = 0, ¿ = 1 ,2 , . . . , n G N . (1)

Let { X j } j € N be a martingale difference sequence with respect to some filtration {^/}jei\iu{o} such that

E{X2

j\T^) = \, i = 1 ,2 , . . . . (2)

Then for each n 6 N the process

Snlk= £ ¿ = 1 ,2 , . . . , (3)

l<t\j<* j < k \ i < j )

is both a square integrable martingale and a stochastic integral with respect to {Fj}-

Using the martingale structure, a Functional Central Limit Theorem for suitably scaled

{£n,A:}fceN w & s proved in [JaMe90]. In the present paper we state a non-central functional

limit theorem based on limit theorems for stochastic integrals given in [JMP89]. The limit

is identified with a double Wiener-Ito stochastic integral (see e.g. [Ito51] or [Maj81]). In

some sense it is not surprising: such limits arise, for example, in limit theory for quadratic

forms in stationary gaussian sequences exhibiting long-range dependence (see [Ros79], also

[SuHo86]).

* Supported by CPBP 01.02

1

Page 3: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

70

For each n € N, let A n be the symmetrization of A 7 1, i.e. the matrix with entries

(alj + ali)/2' F o r A " ' d e f i n e i t s representation in Z,2([0, T ] 2 ) by the formula

AS(ti,t;) = af n t t ] f [ n v j for T > u,t> > 0. (4)

Finally, let

Xn(t) = £ X, (5) l<j<[nt]

y-(t) = n" 1 j f a&X.-X,-. (6) l<ij<[nt]

Theorem Suppose A n 's satisfy (1) and {Xj} is a martingale difference sequence such

that (2) holds.

If f\n converges in L 2 ([0, T ] 2 ) to some function A, then

Yn V F ' ( 7 )

where

Y(t) = J jA(u,v)I[0tt?(u,v)dWudWv (8)

is the classical Wiener-Ito integral P R O O F . For each e > 0 there are continuous functions I = 1,2, . . . , ra and

numbers a x , . . . , am such that

*(M) = JLa' 9

satisfies

| | A - * | | 2 < c . (9)

Hence for n > n x , ||A" — $| | 2 < 2s and by continuity of $ ||A" - $„ | | 2 < 3e for n > n 2 , where $n(s,t) = $([ns]/n, [n*]/n).

If

Zn(t) = n-1 ¿2 9(i/n,j/n)XiXjt (10)

then for n > n 2

£ sup \Yn(t) - Zn{t)\2 < AE\Yn{T) - Zn{T)\2 < 4||S* - $ n | | ' < 4 • 9e 2 . (11) l < t < T

Let

Z(*) = / J$(u,v)I[0,t?{u,v)dWudWv. (12)

By the isometry property for Wiener-Ito integrals

E sup \Y( t ) - Z(t)\2 < 4E\Y(T) - Z(T)\2 = 4\\A - $ | | 2 < 4e 2 . (13)

2

Page 4: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

71

Hence it is enough to prove that

z n v z (14) on the space D ( [ 0 , T ] ) . But

Zn(t) = 2U-1 ¿2 ^{i/nJ/^XiXj l<i<j<[nt]

m f XX

1=1 \i<.<i<H v n v n

+ £ ^ ( i / n J M j / n ) ^ ) i<i<j<M VnVnJ

= X > (jf Mv) (jQ

v~ Hu) dx^j dx:+

v p a i (jf (jf~ ̂ /(w) ^ +

+jf m») (jf ^(«) <w«) ^ )

where the convergence in distribution holds by [JMP89, Theorem 2.6] •

Example 1. Let / : [0, l ] 2 -+ R 1 . Define quadratic forms

"?j = f

If gn{u,v) = f([nu],[nv]) —v L i f(u,v), then

n _ 1 £ -T f fl{u,v)dWudWv, X<ij<[nt\ V J ° J °

where / is the symmetrization of / .

Example 2. Let

Co = 0, C X = 6i, C 2 = ¿2, • • • , Q = Q + l = &1> c d + 2 = ¿2, • . •

Define a matrix A by ai,i = c\i-j\-

In this case A" does not converge, so we cannot apply directly our theorem.

3

Page 5: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

72

Take n = N - d and define a rearranging of coordinates:

t\ i—» ei

erf h» e(d_i)Ar+i

(The general formula is of the form e^d+i *-* e^i^+k+i if 0 < k < N — 1, 1 < z < d). Under this rearranging, the distribution of Xn remains unchanged, while A n transforms

to the form D n = ( d p ^ ) , where for p = (i - 1)N + k + 1 and q = (j - 1)N + 1 + 1

{ 0 if j = z, 1 = k

bd if j = + k &y_t-| if j > z, l> k or j < z, I <k bd~\j-i\ if j > z, / < or j < z, / > A:.

It is easy to see that now D n —* D in £ 2 ( [0 , l ] 2 ) , where 0 if u = u 6d if [d • u] = [d • v] , u + v b\[d.u]-[d.v]\ if [d • u] > [d • v] and { d • u} > {d •

r>/ \ I o r

^ " [d. u) < [d • v] and {d • ix} < { d • &cH[*"M<HI if [d-u]> [d • v] and {d • u} < {d • i?}

or [d • u] < [d • v] and {d • u} > {d - v}

Here [x] is the integer part of x and {x} = x — [#]. The convergence is easily extendible from subsequence N • d to the whole N. But we

do not have the functional convergence, since

l<ij<[nt]

and

l<«,i<[n«]

have nothing common except for t = 1, where they coincide.

4

Page 6: A Non-Central Functional Limit Theorem for Quadratic … · 69 A Non-Central Functional Limit Theorem for Quadratic Forms in Martingale Difference Sequences Adam Jakubowski* Uniwersytet

73

References

[Ito51] Itô, K. Multiple Wiener integral, J. Math. Soc. Japan 3 (1951), pp. 157-169.

[JaMé90] Jakubowski, A. & Mémin, J. A functional central limit theorem for quadratic forms in independent random variables, preprint (1990).

[JMP89] Jakubowski, A., Mémin, J. & Pages, G. Convergence en loi des suites d'integrales stochastiques sur l'espace $1 de Skorokhod Probab. Th. Rel. Fields 81 (1990), pp. 111-137.

[Maj81] Major, P. Multiple Wiener-Ito Integrals, Lecture Notes in Math., 849, Springer 1981.

[Ros79] Rosenblatt, M. Some limit theorems for partial sums of quadratic forms in stationary gaussian variables Z. Wahrsch. verw. Gebiete 49 (1979), pp. 125-132.

[SuHo86] Sun, T.C. & Ho, H.C. On central and non-central limit theorems for nonlinear functions of a stationary Gaussian process, in: Eberlein, E. & Taqqu, M., Eds, Dependence in Probability and Statistics, Birkhäuser, Boston 1986.

5