296
7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 1/296 The social logic of space

[Bill Hillier, Julienne Hanson] the Social Logic of Space

Embed Size (px)

DESCRIPTION

Based on a new way of describing and analyzing the kinds of spatial patterns produced by buildings and towns, this study presents a new theory of space: how and why it is a vital component of how societies work. The authors examine what it is about different types of societies that leads them to adopt different spatial forms and from this general theory they outline a "pathology of modern urbanism" in today's social context.

Citation preview

Page 1: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 1/296

The social logic of space

Page 2: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 2/296

Page 3: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 3/296

Le fait humain par excellence est peut-etre moins la creation del'outil que la domestication du temps et de Tespace, c'est-a-dire lacreation d'un temps et d'une espace humaine.

Andr6 Leroi-Gourhan:  La Geste et la Parole

T O O U R S T U D E N T S

Page 4: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 4/296

Page 5: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 5/296

The social logic

of spaceBILL HILLIER

J U L I E N N E H A N S O N

Bartlett School of Architecture and PlanningUniversity College London

1 C A M B R I D G EUNIVERSITY PRESS

Page 6: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 6/296

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB 2 2RU, UK

Published in the United States of Am erica by Cam bridge University P ress, New York

www. Cambridge. org

Information on this title: ww w.cambridge.org/9780521233651

© Cambridge University Press 1984

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing ag reeme nts,no reproduction of any part may take place without

the written permission of Cambridge University Press.First published 1984First paperback edition 1988

Reprinted 1990,1993, 1997,2001, 2003

A catalogue record or this publication is available from the British Library

Library of Congress catalogue card number.  83-15004

ISBN-13 978-0-521-23365-1 hardback

ISBN-10 0-521-23365-8 hardback

ISBN-13 978-0-521 -36784-4 paperback

ISBN-10 0-521-36784-0 paperback

Transferred to digital printing 2005

Page 7: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 7/296

Contents

Preface  ix

Introduction 1

The problem of space  26

Society and space 26The problem of space 29The logic of discrete system s 33The inverted genotype 42M orphic languages 45

The logic of space  52Introduction 52Com pressed descriptions 53Some exam ples 55

Elem entary genera tors: an ideograp hic language 66

The analysis of settlement layouts  82Individu als and classes 82A model for syntactic representation, analysis and

interpretation: alpha-analysis 90A proc edu re for analys is 97Som e differences 123An excursion into interpretation: two social

parad igm s of space? 140

Buildings and their genotypes  143Inside s and outs ides : the reversal effect 143The analys is of the sub divid ed cell 147Som e exam ples of dom estic space 155Tw o large com plexes from the ethnog raphic record 163

The elementary building and its transformations  176Elementary buildings 176Reversed build ings and others 183

The spatial logic of arrangements  198From struc tures to particu lar realities 198

vii

Page 8: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 8/296

viii  Contents

Abstract materialism 201The seman tic il lusion 206

7 The spatial logic of encoun ters: a compu ter-aidedthought experiment  223A naive experiment 223Societies as enc oun ter probab ilities 234

8 Societies as spatial systems  242Some societies 242Notes tow ards a general theory 256

Postscript  262Th e social logic of spac e today 262

Notes  269Index 276

Page 9: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 9/296

Preface

However much we may prefer to discuss architecture in terms ofvisual styles, its most far-reaching practical effects are not at the

level of appearances at all, but at the level of  space.  By givingshape and form to our material world, architecture structures thesystem of space in which we live and move. In that it does so, ithas a direct relation - rather than a merely symbolic one - tosocial life, since it provides the material preconditions for thepatterns of movement, encounter and avoidance which are thematerial realisation - as well as sometimes the generator - ofsocial relations. In this sense, architecture pervades our everydayexperience far more than a preoccupation with its visual proper-ties would suggest.

But however pervasive of everyday experience, the relation

between space and social life is certainly very poorly understood.In fact for a long time it has been both a puzzle and a source ofcontrove rsy in the social scien ces. It seems as naive to believe thatspatial organisation through architectural form can have a deter-minative effect on social relations as to believe that any suchrelation is entirely absen t. Recent reviews of sociological researchin the area (Michelson, 1976

1) do not really resolve the matter.

Some limited influences from such generalised spatial factors asdensity to social relations are conceded, subject to strong inter-action with such sociological variables as family (p. 92), homo-

geneity (p. 192) and lifestyle (p. 94). But little is said about theways in which strategic architectural decisions about built formand spatial organisation may have social consequences.

The puzzle is made more acute by the widespread belief thatmany modern environments are 'socially bad

5. Again, there is a

tendency to discuss these in terms of simple and general physicalvariables, such as building height. However, the inference thatmore fundamental spatial factors are involved is strongly sup-ported by the failure of recent low-rise, high-density schemes toprovide a convincing alternative following the debacle of high-rise housing. Modern high- and low-rise housing have in common

that they inno vate fundam entally in spatial organisation, and bothprod uce, in comm on it seems, lifeless and deserted environmen ts.

IX

Page 10: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 10/296

x Preface

It has become clear that a lack of understanding of the precisenature of the relation between spatial organisation and social lifeis the chief obstacle to better design.

The obvious place to seek such an understanding is in the

disciplines that are concerned with the effect of social life onspatial organisation - how spatial organisation is in some sense aproduct of social structure. This has long been a central concernfor geographers, but recently anthropologists (Levi-Strauss, 1963;Bourdieu, 1973, 1977), theoretical sociologists (Giddens, 1981)and arch eolog ists (Ucko et. al., 1972; Clarke, 1977; Renfrew, 1977;Hodder, 1978) have become aware of the spatial dimension intheir subject, and its importance to questions of social morpholo-gy and structure.

2  This has created the early stages of a new

interdisciplinary literature on the study of space and society.

The first result of this attention, howeve r, has been to show howlittle effective theory and methodology there is in understandingthe society-space relation, in spite of two decades or more of the'quantitative revolution'. But while academic disciplines maysimply deplore the lack of theory, for architects and planners theproblem is a more pressing one, since as things stand there is noway that scientific theory of the society-space relation can eitherhelp to understand what has gone wrong with contemporarydesign or suggest new approaches.

The aim of this book is to reverse the assumption that know-ledge must first be created in the academic disciplines before

being used in the app lied ones, by using architecture as a basis forbuilding a new theory - and a new approach to theory - of thesociety-space relation. This is possible, we believe, becausetheories of the relation between society and its spatial form haveencountered two fundamental difficulties. First, there is no con-sistent descriptive  account of the morphological features of 'man-made' space that could be lawfully determined by social proces-ses and structures. Second, there is no descriptive account of themorphological features of societies that could require one kind ofspatial embodiment rather than another. The reason for this lack

of progress is at root to do with the paradigm within which weconceptualise space which, even in its most progressive formspostu lates a more or less abstract - certainly a-spatial - dom ain ofsociety to be linked to another, purely physical domain of space.The paradigm in effect conceptualises space as being withoutsocial content an d society without spatial content. Yet neither canbe the case, if there are to be lawful relations between them.

The aim of The  Social Logic of Space  is to begin witharchitecture, and to outline a new theory and method for theinvestigation of the society-space relation which takes account ofthese underlying difficulties. First, it attempts to build a concep-

tual model within which the relation can be investigated on thebasis of the social content of spatial patterning and the spatial

Page 11: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 11/296

Preface  xi

con tent of social patter ning. Second, it tries to establish, via a newdefinition of spatial order as restrictions on a random process, ame thod of analysis of spatial pattern, with em phas is on the relationbetween local morphological relations and global patterns. It

establishes a fundamental descriptive theory of pattern types andthen a method of analysis. These are applied first to settlementsand then to building interiors in order to discover and quantifythe presence of different local and global morphological features.On this basis, it establishes a descriptive theory of how spatialpattern can, and does, in itself carry social information andcontent.

The argument then turns to society, and extends the samemorphological argument into the domain of social relations, byconsidering them as restrictions on random encounter patterns.

From this naive spatial view of society, a theory is developed ofhow and why different forms of social reproduction require andfind an embodiment in a different type of spatial order. This'spatial logic of society' is applied first to some well-documentedexamples to establish the theory in outline, then is applied to tryto give some account of the variability in spatial form in contem-porary industrial societies.

The book is thus a statement of a new theory and sketch of newmethods of spatial analysis. It should be emphasised, however,that a considerable number of studies have now been carried outat University College London using this framework, and it is

inten ded that further vo lume s of case studies using the theory andmethod should follow The  Social  Logic  of  Space as soon aspossible: these include the social logic of settlements, the sociallogic of housing, and the social logic of complex buildings.

Because it represents a new theoretical departure, however, TheSocial Logic of Space  embeds itself only tangentially in theestablishe d frameworks and me thod s of the subject. Even fields ofresearch that might appear, at first glance, to be close to ourapproach, turn out eventually to have limited relevance. Forexample, the 'pattern language' of Christopher Alexander and his

colleagues at Berkeley (1977),3

 while appe aring at first to be closeto our notion of fundamental syntactic generators, is in fact quiteremote, in intention as well as in its intrinsic nature. For ourpurposes, Alexander's notion of a pattern is too bound to thecontingent properties of configurations to be useful for us; whileat a mo re abstract level, his preo ccup ation with hierarchical formsof spatial arrangement (surprising in view of his earlier attack onhierar chical think ing in 'A city is not a tree' (1966)

4) would hinder

the formation of non-hierarchical, abstract notions of spatialrelations which, in our view, are essential to giving a properaccount of spatial organisation.

The more recent development of 'shape grammars' by Stiny andGips (1978)

5  would again, at first sight, appear to be close to the

Page 12: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 12/296

xii Preface

notion of 'space syntax' as formulated in this book, the more sosince 'shape grammars' are firmly concerned with the abstractgenerative principles of spatial patterns. But while concedingtheir superior mathematical refinement, we have found that shapegrammars are in general too over-refined to model the untidysystems which are found in the real world of settlements andbuildings. Our notion of 'syntactic generators' is insufficientlyformalised for a full mathematical treatment, yet syntactic gener-ators are right for the job that they are intended to do: capturingthe formal dimensions of real-world spatial systems in terms ofthe social logic behind them. Syntactic generators are simplerthan shape grammars. Moreover, they are shape free. We areconvinced that it is unnecessary to specify shape in order tomo del real-world generative processes; indeed, that the concept of

shape obscures the fundamental relational notions that underpinhuman spatial order. Moreover, with the limited role assigned torandomness in shape grammars - as opposed to the foundation ofspace syntax on the notion of randomness - we find that in theirvery foundations they tend to overdetermine the realities that weare trying to model.

At a more general level, we can prop erly be accused of ignoringthe considerable development of mathematical methods of spatialanalysis in quantitative geography. The reason for our lack ofcontinuity with this work is more fundamental. To our way ofthinking, two concepts underpin the geographic approach toformal spatial analysis (with the possible exception of the tradi-tion from von Thunen (1826) to Christaller (1933) and Losch(1954),  which adds a geometric element into morphology): theseare the notion of distance; and the notion of location.

6  It is crucial

to our approach that neither of these concepts - in spite of theirmanifest usefulness for the purposes for which they have beenapplied - appears in the foundations of 'space syntax'. This isinitially distance free, and for the concept of location is substi-tuted the concept of morphology, by which we imply a concernwith a whole set of simultaneously existing relations. It is in the

analysis of the global properties of such complexes of relationsthat we believe that space syntax has a robust and demonstrablerole, revealing aspects of structure which are obscured by conven-tional analyses.

We sincerely hope that in time this discontinuity between ourwork and more established lines will cease to exist as syntheticstudies are carried out. But in the meantime the reader is asked toread th e book as what it is intended to be: a statement of a whollynew theoretical approach, rather than a review of existing work -with all the weaknesses, as well as the advantages, that this canimply.

September 1982

Page 13: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 13/296

Acknowledgements

This book was conceived in the mid-1970s in the later stages ofmy collaboration with Adrian Leaman. Some of the foundationalconcepts were elaborated first in a series of papers which we

authored jointly in the early 1970s. The substantive theory set outin the book, and its associated methodologies, date, however,from my collaboration with my co-author, Julienne Hanson,which began in 1975. Since then, several people have madesubstantial and indispensable contributions to the developmentof both theory and me thod . The chief of these is Dr John Pepon is,wh ose influence especially on the ana lytic chapters (3, 4 and 5) istoo pervasive to be acknowledged in detail. The contribution ofPaul S tansall du ring the early stages of the 'space syntax' researchprogramme on which the book draws heavily, was also of keyimportance. The Science Research Council (now the Science and

Engineering Research Council) must also be thanked for itssustained support of the 'space syntax' research programme overseveral years. This allowed us to turn abstract ideas into opera-tional techniques of analysis.

Our debt m ust also be acknow ledged to Paul Coates for his workin developing the computer software; to Mick Bedford, JohnHudson and Richard Burdett for their contribution to the researchprogramme; and to others who at various times worked in theresearch program me , especially D oug Smith, Justin de Syllas, JossBoys and Chris Gill; to Janet Knight, Liz Jones, Nick Lee-Evans

and David Thorn for the graphic work; to William Davies,Pauline Leng, Carmen Mongillo and Jane Powles of CambridgeUniversity Press; and to John Musgrove, Basil Bernstein, PhilSteadman, Tom Markus, Alan Beattie, Barrie Wilson, DeanHawkes and Newton Watson, whose interest in and support of ourwork has been far more important than they realise.

Most of all, our thanks are due to the students of the MSc inAdvanced Architectural Studies at the Bartlett and to MPhil andPhD students associated with its Unit for Architectural Studies,since without their prodigious and ingenious efforts, the constanttesting of hypotheses on which progress in the research has

depended, would not have been possible.BILL HILLIER

xiii

Page 14: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 14/296

Page 15: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 15/296

Introduction

For the most part, the design of an artefact - whether it is a bridge,

a cup or a surgical instrument - has a certain logic to it. First,functional  objectives mu st be achieved: materials or elemen tsmust be assembled into a form which works for a well-definedpurpose, or range of purposes. When this is done, a seconddimension may be added: that of style. By this we mean thatdecoration, embellishments, or even modifications of shape, cangive the artefact a significance over and above its practical uses,one belonging to the realm of cultural identity or 'meaning'.Sometimes, of course, it is difficult to tell which aspects of anartefact belong in which realm. But there is never any doubt thatthe artefact does belong to two realms. Invariably, artefacts are

both functional and meaningful. Insofar as they are the first, theyare of practical use; insofar as they are the second, they are ofprimarily social use, in that they become a means by whichcultural identities are known and perpetuated.

At first sight, this simple scheme might seem to apply parexcellence  to that most om nipre sent of artefacts, the building.Buildings are, after all, expected to function properly, and theirappearance is often held to be such an important aspect of cultureas to be a constant source of pub lic controversy a nd debate. But itis not quite so simple. Buildings have a peculiar property that sets

them apart from other artefacts and complicates the relationbetween usefulness and social meaning. It is this. Buildings maybe comparable to other artefacts in that they assemble elementsinto a physical object with a certain form; but they are incom para-ble in that they also create and order the empty volumes of spaceresulting from that object into a pattern. It is this ordering of spacethat is the purpose of building, not the physical object  itself.  Thephy sical object is the m eans to the end . In this sense, buildings arenot what they seem. They appear to be physical artefacts, like anyother, and to follow the same type of logic. But this is illusory.Insofar as they are purposeful, buildings are not just objects, but

transformations of space through objects.It is the fact of space that creates the special relation between

1

Page 16: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 16/296

2 The social logic of space

function and social meaning in buildings. The ordering of spacein buildings is really about the ordering of relations betweenpeople. Because this is so, society enters into the very nature andform of buildings. They are social objects through their very formas objects. Architecture is not a 'social art' simply becausebuildings are important visual symbols of society, but also be-cause, through the ways in which buildings, individually andcollectively, create and order space, we are able to recognisesociety: that it exists and has a certain form.

These peculiarities of buildings as artefacts lead to a veryspecial problem in trying to understand them, and even in tryingto talk about them analytically. It is a fairly straightforward matterto talk about artefacts in general, because in so doing we aretalking about objects, and the important properties of objects are

visible and tangible. But in talking about buildings, we need notonly to talk about objects, but also about systems of spatialrelations.

Now it seems to be a characteristic of the human mind that it isextremely good at using relational systems - all languages andsymbolic systems are at least complex relational systems - butrather bad at know ing how to talk about them . Relations, it seem s,are what w e think with,  rather than what we think of. So it is w ithbuildings. Their most fundamental properties - their ordering ofspace into relational systems embodying social purposes - aremuch easier to use and to take for granted than to talk about

analytically. As a result, the discourse about architecture that is anecessary concomitant of the practice of architecture is afflictedwith a kind of permanent disability: it is so difficult to talk aboutbuildings in terms of what they really are socially, that it iseven tually easier to talk about appearan ces and styles and to try tomanufacture a socially relevant discourse out of these surfaceproperties. This cannot be expected to succeed as a social dis-course because it is not about the fundamental sociology ofbuildings.

At most times in the past, this disability might not have

mattered. After all, if intuition reliably reads the social circum-stances and reproduces them in desirable architectual form, thenarch itecture can be a successful enterprise . But this is not the casetoday. Since the Second World War, our physical environmenthas probably been more radically altered than at any time sincetowns and cities began. By and large, this has been carried out onthe basis of an architectural discourse which, for the first time,stresses explicit  social  objectives. Yet it is exactly in terms of itslong-term social effects that the new urban environment has beenmost powerfully criticised. There is a widespread belief that weare faced with a problem of urban pathology, which results at

least in part from the decisions of designers and the effects, for themost part unforeseen, of new building forms on the social

Page 17: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 17/296

Introduction 3

organisation of space. In these circumstances an explicit dis-course of architectural space and its social logic is an absoluterequirement.

But in spite of its centrality in the act of creating architecture,and in its recent pu blic patho logy, the question of space has failedto become central in the academic and critical discourses thatsurround architecture. When space does feature in architecturalcriticism, it is usually at the level of the  surfaces  that define thespace, rather than in terms of the space  itself;  when it is aboutspace, it is usually at the level of the individual space rather thanat the level of the system of spatial relations that constitute thebuilding or settlement. As a result, a major disjunction hasdeveloped not only between the public pathology of architectureand the discourses internal to architecture, but also between the

practical design and experience of buildings and these discourses.This disjunction is made worse by the persistence of an analyticpractice conducted first through images, then through words; andneither images nor words responding to those images can gobeyond the immediate and synchronous field of the observer intothe asynchronous complex of relations, understood and experi-enced more than seen, which define the social nature of buildingsand settlements. The rift has become complete as discourse triesto lead the way back into classicism - as though cosmetic artistrywould cure the disease as well as beautify the corpse.

The architectural critic is, of course, handicapped by therepresentations of architecture with which he works. The onlyrepresentative of spatial order in the armoury of the critic is theplan. But from the point of view of words and images, plans areboth opaque and diffuse. They convey little to the image-seekingeye,  are hard to analyse, and give little sense of the experientialreality of the building. They do not lend themselves easily to theart of reproducing in words the sentiments latent in images whichso often seems the central skill of the architectural critic. Accor-dingly, the plan becomes secondary in architectural analysis.With its demise, those dimensions of the buildings that are not

immediately co-present with the observer at the time that heformulates his comment are lost to discourse. In this way,architectural discourse conceals its central theme.

In architecture space is a central  theoretical  discipline, and theproblem is to find a way to stud y it. But the problem of space itselfis not confined to architecture. In anthropology, for example, itexists as an  empirical  prob lem . The first-hand stud y of a large

number of societies has left the anthropologist with a substantialbody of evidence about architectural forms and spatial patterns,

Page 18: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 18/296

4 The social logic of space

which ought to be of considerable relevance to the developmentof a theory of spa ce. But the m atter is far from s imp le. The body ofevidence displays a very puzzling distribution of similarities anddifferences. If we take for example the six societies in NorthernGhana w hose ar chitectu re has been studied by Labelle Prussin, wefind that within a fairly restricted region with relatively smallvariations in climate, topography and technology, there are verywide variations in architectural and spatial form, from square-celled buildings arranged in dense, almost town-like forms, tocircular-celled structures so dispersed as to scarcely form identi-fiable settlements at all.

1

But no less puzzling than the differences within the sameecological area are similarities which jump across time and space.For example, villages composed of a concentrically arranged

collection of huts surrounding one or more central structures canbe found today as far apart as South America and Africa (see Figs.30 and 133) and as far back in time as the fourth millen nium   BC inthe Ukraine.

2  Taking the body of evidence as a whole, therefore,

it seems impossible to follow the common practice when facedwith an individual case of assuming architectural and spatial formto be only a by-product of some extraneous determinative factor,such as climate, topography, technology or ecology. At the veryleast, space seems to defy explanation in terms of simple externalcauses.

Aware of these difficulties, certain 'structural' anthropologists

have suggested another approach. Levi-Strauss for example, tak-ing his lead from Durkheim and Mauss, saw in space the oppor-tunity to 'study social and mental processes through objective andcrystallised external projections of them'.

3  A few anthropologists

have pursued this, and there now exists a small but growing'anthropological' literature on space. However, as L6vi-Straussindicated in the same article, there are unexpected limitations tothis approach. Levi-Strauss had already noted in reviewing theevidence relating social structure to spatial configuration that'among numerous peoples it would be extremely difficult to

discover any such relations . . . wh ile among o thers (who musttherefore have something in common)the existence of relation isevide nt, though unclea r, and in a third group spatial configurationseems to be almost a projective representation of the socialstructure'.

4 A mo re extensive review can only serve to confirm this

profound difficulty and add another. Seen from a spatial point ofview, societies vary, it seems, not only in the  type  of physicalconfiguration, but also in the degree to which the ordering of spaceappears as a conspicuous dimension of culture. Even thesediffierences can take two distinct forms. Some societies appear toinvest much more in the physical patterning of space than others,

while others have only seemingly informal and 'organic' patterns,while others have clear global, even geometric forms; and some

Page 19: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 19/296

Introduction 5

societies built a good deal of social significance into sp atial form by,for example, linking particular clans to particular locations, whileothers have recognisable spatial forms, but lack any obviousinvestment of social significance.

In studying space as an 'external projection' of 'social andmental processes' which by implication can be described prior toand independent of their spatial dimension, it is clear thatstructural anthropologists are therefore studying the problem ofspace neither as a whole nor in   itself:  the first because they areconcerned chiefly with the limited number of cases where orderin space can be identified as the imprint of the conceptualorganisation of society within the spatial configuration; thesecond because they still see space as a by-product of somethingelse whos e existence is anterior to that of space and determ inative

of it. By clear implication this denies to space exactly thatdescriptive autonomy that structuralist anthropology has soughtto impa rt to other pattern-forming dim ensio ns of society - kin shipsystems, mythologies, and so on. Such studies can thereforecontribute to the development of a theory of space, but they aretoo partisan to be its foundation.

The anthropological evidence does, however, allow us to spe-cify certain requirements of a theory of space. First, it mustestablish for space a  descriptive autonomy,  in the sense thatspatial patterns must be described and analysed in their ownterms prior to any assumption of a determinative subservience toother variables. We cannot know before we begin what willdetermine one spatial pattern or another, and we must thereforetake care not to reduce space to being only a by-product ofexternal causative agencies. Second, it must account for wide andfundamental variations in morphological type, from very closedto very open patterns, from hierarchical to non-hierarchical, fromdispersed to compressed, and so on. Third, it must account forbasic differences in the w ays in w hic h sp ace fits into the rest of thesocial system. In some cases there is a great deal of order, in othersrather little; in som e cases a great deal of social 'me aning ' seems to

be invested in space, in others rather little. This means that weneed a theory that within its descriptive basis is able to describenot only systems with fundamental morphological divergencies,but also systems which vary from non-order to order, and fromnon-meaning to meaning.

i n

Several attempts have been made in recent years to developtheory and method directly concerned with the relation betweensociety and its architectural and urban forms. Before going on to

give a brief account of the theory and method set out in this book,some rev iew of these is need ed, if for no other reason than because

Page 20: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 20/296

6  The social logic of space

in our work we have not found  it possible to build a great de al on

what has gone before. The general reason for this is that, a lthoughthese various lines of research ap proach the problem of space in a

way which allows research  to be  done  and  data  to be  gathered,none defines  the  central problem in the way which  we believe is

necessary  if  useful theories are to be developed.  In spite of  theirconsiderable divergencies from  one another,  all  seem  to  fall intocertain underlying difficulties with  the  problem  of  space whichwe  can  only describe  as  paradigmatic.  The  approach  is  definednot out of the  central problem  of  architecture  itself, in the  sensethat  we  have defined  it, but out of a set of  more philosophicalpresuppositions about  the nature  of  such problems  in general.

By far the best known c andidate for a  theory which treats spacedirectly  as a  distinct kind  of  social reality, and the one  that  has

influenced architecture most, is the theory of  'territoriality'. Thistheory exists  in  innumerable variants,  but its  central tenets  are

clear: first,  the  organisation  of  space  by  human beings  is  said  to

have originated  in and can be  accounted  for by a  universal,biologically determined impulse  in  individuals  to  claim  and

defend  a  clearly marked 'territory', from which others will be - at

least selectively  -  excluded;  and,  second, this principle  can be

extended  to all  levels  of  human grouping  (all  significant humancollectives will claim  and  defend  a territory in the same way thatan individual will). The  theory proposes  in  effect that there willalways  be a  correspondence between socially identified groups

and spatial domains,  and  that  the  dynamics  of  spatial behaviourwill  be  concerned primarily with maintaining this correspond-ence.  It  asserts  by  implication that space  can  only have socialsignificance  by  virtue  of  being more  or  less unequivocally iden-tified with  a  particular group  of  people.  A  whole approach  to

urban pathology  has  grown  up out of the  alleged breakdown of

territorial principles  in our towns  and cities.5

An obvious trouble with territoriality theory  is that, because itsassumption is of a universal drive, it cannot  in principle  accountfor  the  evidence.  If  human beings behave  in one  spatial  way

towards each other, then how can the theory be used  to  accountfor  the  fundamental differences  in  physical configuration,  let

alone  the  more difficult issues  of the  degree  to  which societiesorder space  and  give significance  to it? How, in brief, may we

explain a variable by a constant? But if we  leave aside this logicalproblem for a moment and consider  the theory as a whole, then it

becomes  a  little more interesting.  As we  have said,  the  theoryleads us to expect that 'healthy' societies will have a hierarchical-ly organised system   of  territories corresponding  to  socially  de-

fined groups. Now there  are  certainly cases where such a  systemexists,  and  others where  it  exists alongside forms  of  group

organisation that lack a  territorial dimension. But the extens ion ofthis to the  level  of a  general principle overlooks one of the  most

Page 21: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 21/296

Introduction  7

fundamental distinctions made  by  anthropologists:  the  distinc-tion between groups that have  a  spatial dimension throughco-residence  or  proximity,  and  groups whose very purposeappears  to be to  cross-cut such spatial divisions and to  integrateindividuals  across space - ' soda l i t ie s ' as some anthropologists callthem. It is in the  latter, the  non-spatial sodality, that many of the

common techniques  for  emphasising  the  identity  of  socialgrou ps —insignia, cere mo ny, statu ses , m ythologies   and so  on —find their strongest realisation, most probably   for the  obviousreason that groups that lack spatial integration must  use  other,more conceptual means  if  they are to cohere as groups. Now thisleads to a problematic  yet  interesting consequence  for territorial-ity: social identification  and spatial integration  can  often work in

contrary directions, not in  correspondence as the  theory requires.

It has  even been suggested that sodality-like behaviour  in  socialgroups varies inversely with spatial integration:  the  more  dis-

persed  the  group,  the  more sodality-like  the  group becomes.6 In

other words, territoriality appears  to be not a  universal groupbehaviour  but a  limiting case, with  the  opposite type  of  case at

least  as  interesting  and  empirically important.

Territory theory, especially  in its  limitations, might be  thoughtof  as an  at tempt  to  locate  the  origins  of  spatial order  in the

individual biological subject. Other approaches might be seen as

trying to  locate it in the  individual cultural subject by  developingtheories  of a  more cognitive kind.  In  such theories, what  are at

issue  are  models  in  individual minds  of  what space  is  like:models that condition  and  guide reaction  to and  behaviour  in

space. If territoriality  is a theory of  fundamental similarity, thesecognitive theories tend  to be  theories  of  cultural,  or  even indi-vidual difference.  The  cognitive approach  is  less ambitioustheoretically,  of  course, because  it  does  not aim to  provide  a

universal theory  of  space; rather  it is  concerned  to  provide  a

methodology  of  investigating differences. Studies along theselines  are  therefore extremely valuable  in  providing data  on

differences in the ways in which individuals, and perhaps groups,

cognise their environment,  but  they  do so on the  whole  inresponse to an  environment that  is  already given. The  order thatis being sought lies in the mind and not in the  physical environ-ment  itself, and  certainly  not in the  social structuring  of the

physical environment. Cognitive studies provide  us,  therefore,with a useful method , but not with a theoretical starting po int for

an enquiry into  the  social logic of space  itself.

Other approaches  to the  problem  are  distinguishable  as  beingconcerned initially with the environment as an  object rather thanwith  the  human subject,  in the  sense that  the  focus  of  researchshifts to the problem of describing the physical environment, and

its differences  and  similarities from  one place or time to another,as a prelude to an understanding of how this relates to patterns of

Page 22: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 22/296

8 The social logic of space

use and social activity. Of particular interest here is the workcentred around the Massachusetts Institute of Technology andpublished in a recent volume, which brings together a range ofstudies with the central thematic aim of going beyond the moretraditional classification approaches of geographers to urbanmorphology into an analysis of how differences in the organisa-tion of architectur al an d urba n spac e relate to and influence sociallife.

7 Once again this work has substantial relevance to the present

work, but does not provide its starting point, since there is afundamental difference in how the problem is conceptualised.The general aim of the MIT work is to describe environments andthen relate them to use, whereas we conceive the problem as beingthat of first describing how environments acquire their form andorder as a result of a social process. Our initial aim has been to

show how order in space originates in social life, and therefore topinpoint the ways in which society already pervades thosepatterns of space that need to be described and analysed. Onlywh en this is unders tood is it possible to make a theoretical link topatterns of use.

Counterpointing the approach to an objective environment, initself devoid of social content, is the approach of the architecturaland urban semiologists who aim to describe the environmentsolely in terms of its power to operate as a system of signs andsymbols. By developing models largely out of natural languagestud ies, the object of these researches is to show how the physical

env ironm ent can expre ss social mean ings by acting as a system ofsigns in much the same sort of way as natural language. In thissense , it is the s tudy of the system atics of appea rances. T here is nodou bt, of course, that building s do express social mea ning throu ghtheir appearances, though no one has yet shown the degree towh ich we can expect this to be systematic. However, the reason thatthis line of work cannot provide our starting point is morefundamental: the semiologists for the most part are attempting toshow how buildings represent society as signs and symbols, nothow they help to constitute it through the way in which the

configurations of buildings organise space. They are in effectdealing with social meaning as something which is added to thesurface appearance of an object, rather than something thatstructures its very form; and in this sense the building is beingtreated as though it were no different from other artefacts. Thesemiologists do not in general try to deal with the specialproblems that buildings present in understanding their relation tosociety: they try to fit architecture into the general field of artefactsemiotics.

In spite of considerable divergences, these approaches all seemto sidestep the central problem of buildings in the sense that we

have described it: they do not first conceptualise buildings ascarrying social determination through their very form as objects.

Page 23: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 23/296

Introduction 9

In fact, they characteristically proceed by separating out theproblem in two ways: they separate out the problem of meaningfrom the intrinsic material nature of the artefact, that is, they treatit as an ordinary artefact rather than as a building; and theyseparate out a human subject from an environmental object andidentify the problem as one of understanding a relation betweenhuman beings and their built environment. The effect of bothshifts is the same. They move us from a problem definition inwhich a building is an object whose spatial form is a form of socialordering (with the implication that social ordering already has initself a certain spatial logic to it), into one in which the physicalenvironment has no social content and society has no spatialconte nt, the former being redu ced to mere inert material, the latterto mere abstraction. This we call the man-environment

paradigm.

8

An impossible problem is thus set up, one strongly reminiscentof the most ancient of the misconceived paradoxes of epistemolo-gy, that of finding a relation between abstract immaterial 'subjects'and a ma terial world of 'objects'. By the assu mp tion that w hat is tobe sought is a relation between the 'social' subject (whetherindividual or group) and the 'spatial' object acting as distinctentities, space is desocialised at the same time as society isdespatialised. This misrepresents the problem at a very deeplevel, since it makes unavailable the most fundamental fact ofspace: that through its ordering of space the man-made physical

world is already a social behaviour. It constitutes (not merelyrepresents) a form of order in  itself:  one which is created forsocial purposes, whether by design or accumulatively, andthrough which society is both constrained and recognisable. Itmu st be the first task of theory to describe space as such a system.

IV

In view of the twin em pha sis on sp atial order and its social originsin defining the pro blem , it may com e as a surprise that some early

steps in formulating the present theoretical approach came from apurely formalistic consideration of randomness and its relation toform: or more precisely from some simple experiments in howrestrictions on a rando m process of aggregating cells could lead towell-defined global patterns that bore some resemblance to pat-terns found in real buildings and settlements. For example, if aninitial square cell is placed on a surface, then further squares ofthe same size are randomly aggregated by joining one full side ofeach onto a side already in the system, preserving one other sidefree (so that the cell could be entered from outside) and disallow-ing corner joins (as unrealistic - buildings are not joined by their

corners), then the result will be the type of 'courtyard complex'shown in Fig. 2, with some courtyards larger than others. By

Page 24: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 24/296

10 The social logic of space

varying the joining rules, other types of pattern would follow, ineach case with a well-defined global form (that of a kind of netwith unequal holes) following from the purely local rule (in thesense that th e rule only specified h ow on e object should join ontoanother) applied to the aggregation procedure. The differencesbetween these patterns seemed to be architectually interesting inthat some key differences between real spatial patterns appearedto be cap tured . More sup risingly, we discovered a settlement formthat appeared to have exactly the global properties of the originalexperiment (Fig. 3).

9  This suggested to us that it might be

interesting to try to see how far real global settlement forms mightbe generated from local rules. Having started on this path, we laterrealised that the courtyard complex form would not be tidilygenerated if one specified at the time of placing the cell which

othe r sid e its entran ce w as to be on. It requ ired th is to be left ope n.In other words, our first experiment turned out to be unlifelikeFortunately, by the time this was realised, we had some muchmore interesting results.

For a long time, we had been puzzled by the 'urban hamlets' ofthe Vaucluse region of France. Each hamlet seemed to have thesame global form, in that each was organised around an irregular'ring-street* (see Figs 6 and 8(a)-(d)) but at the sam e time th e greatvariations in the way in which this was realized suggested thatthis had arisen not by conscious design but by some accumulativeproce ss. It turn ed out that these 'beady ring ' forms - so-called

because the wide and narrow spaces of the ring street seemed likebeads on a string - could be generated from a process rathersimilar to the courtyard complex, by simply attaching a piece ofopen space to the en trance side of each cell, then aggregating witha rule that joined these open spaces one to another whilerand om ising all other relations (see pp. 59- 61 for a  full descriptionof this process). By varying the joining rules once again, othervariations resulted, many of which appeared to duplicate varia-tions found in this type of settlement form in different parts of theworld.

There were several reasons why this seemed a promisingdevelopment. First, it seemed that real problems in settlementgeneration might sometimes be solved through the notion of localrules leading to well-defined global forms. It raised the possibilitythat other settlement forms might be understood as the globalproduct of different local rules. Second, and more important, itseemed that the nature of the process we had identified could betheoretically significant, in that structure had by implication beenconceptualised in terms of restrictions on an otherwise randomprocess. This meant that in principle it was possible to conceiveof a model which included both non-order and order in its basic

axiom s. In effect, rand om nes s w as playing a part in the gen erationof form, and this seemed to capture an important aspect of how

Page 25: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 25/296

Introduction 11

order in space can sometimes arise and be controlled in tradition-al settlemen t forms. Also by using the m ethod of working out froman u nderlyin g ran dom process, one could always keep a record ofhow much order had been put into the system to get a particulartype of global pattern . Th is ma de po ssible a new question: given areal spatial pattern, say a settlement form, then in what ways andto what degree would it be necessary to restrict a random processin order to arrive at that form. If this proved a fertile approach toreal settlement forms, then an even more interesting questioncould be asked: what was the nature of these restrictions, that isthe 'rules', and how did they relate to each other? Were there afinite number, and did they in some sense form a system?

Of course, considering the range of cases available, it was clearthat in many cases global forms could in no way be seen as the

result of an aggregative process - for example where the globalorder resulted not from the local aggregation of individual cells,but by the superimposition on those cells of higher order, sur-rounding cells (see Fig. 16), in effect creating a hierarchy ofboundaries. However, there was a fundamental difference whenthis occurred. If a single cell contained other cells, then thecontaining was accomplished through the inside of the super-ordinate cell; whereas the global patterns resulting from the beadyring type of process resulted from the cells defining space withtheir outsides. The difference is captured by the difference in themeaning of the words 'inside' and 'between'. Inside implies that

one single cell is defining a space; betwee n im plies that more thanone is defining space. This seemed a very general difference,relating to the different ways in which a random process could berestricted : in the on e case cells were , as it were , 'glued' together byspace which they defined between them; in the other cells were'bound' together by having higher-order cells superimposedaround them. Because the first always resulted in the globalstructure being defined only by virtue of the positioning of acollection of cells, we called it distributed, meaning that the'design' of the global structure was distributed amongst all 'prim-

ary' cells; by the same token, we called the process of using theinside of a cell to define global patterns nondistributed, becausethis was always accomplished by means of a single cell ratherthan a collection.

Other important formal properties seemed to be implicit in thebeady ring generative process. All that happened, formally speak-ing, in that process was that each cell (with its attached openspace) had been made a continuous neighbour of one other cell.Now the relation of neighbour has the formal property that if A isa neighbour of B, then  B  is a neighbour of A - the property thatmathe ma ticians call symmetry. However, relations which involve

cells containing other cells do not have this property. On thecontrary, they are asymmetric, since if cell A contains cell B then

Page 26: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 26/296

12  The social logic of space

cell  B  does not contain cell A. Now it was clearly possible forpluralities to contain space with their outsides as well as singlecells with their insid es. In a village green or a plaza, for exam ple, aset of cells contained a space with their outsides. The generativerelation of closed cells to open spaces was therefore asymmetric,in contrast to the beady ring case where the open spaces had onlybeen symmetric neighbours of closed cells. By proceeding in thisway, it was possible to conceive of an abstract model of the typesof restriction on a random process that seemed to produce thekind of variations found in real cases.

These two pairs of relational ideas, together with the notion ofopen and closed cells, seemed to form the basis of a spatiallanguage that had certain resemblances to natural language. Thedistinction between distributed and nondistributed was no more

than a distinction between pattern elements defined by plural andsingular entities; while the existence of asymmetric relations, inwhich one or more cells contained others, was like a sentence inwhich subjects had objects. These differences are in themselvessimple, but of course give rise to a very rich system of possibili-ties.  Chapter 2, The logic of space', sets out to show how theseelementary ideas can be conceived of as restrictions on a randomproce ss to generate the p rincip al types of global variation found insettlement forms, and through the construction of a consistentideographic language to represent these ideas and their combina-tions as a system of transformations. This is not, of course, a

mathematical system, and even more emphatically it is not amathematical enumeration. It is an attempt to capture the fun-damental similarities and differences of real space forms in aseconomical a way as possible. The axioms of the system are notma them atical axiom s, but a theory of the fundame ntal differencesstated as carefully as possible.

With the idea of a finite set of elementary generators applied asrestrictions on a random process, it seemed that at least twomethodological objectives could be formulated clearly. First, theproblem of identifying morphological types becomes that of

identifying the combination of elementary generators that yieldeda particular form. This had the advantage that because one wastalking about abstract rules underlying spatial forms, rather thanspatial forms themselves - genotypes rather than phenotypes, ineffect - then the comparative relations between different formsbecame easier to see. There were fewer genotypical variationsthan phenotypical variations.

Second, the problem of the degree to which societies investedorder in space seemed restatable in terms of the degree to whichit was necessary to restrict a random process in order to arrive at aform. A highly ordered form would require many restrictionsapplied to the process, while a less ordered form - such as thebeady ring form - would require few. This would be reflected in

Page 27: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 27/296

Introduction 13

the way in which rules were written down in the ideographiclanguage: patterns with a good deal of randomness and few rulescould in principle be written in a short ideographic sentence,whereas those with a great deal of order would require longersentence s. We could talk of 'short descriptions ' and ion g descrip-t ions '  to express the distinction between a system with little orderand much randomness, and one with much order and lit t lerandomness. It was a matter of how many of the potentialrelationships in the system had to be controlled to arrive at aparticular pattern.

In this way, the model could easily express differences in theamount of order in the system. A simple extension of theargum ent the n sho we d that it could also express differences in theamount of social 'meaning' invested in the pattern. In all cases we

have described so far, the restrictions on the random processspecify the necessary relations that have to hold among cells inthe system, and omit the contingent ones, allowing them to berandomised. In this sense, a description, long or short, specifiesthe genotype of the pattern, rather than its phenotype in all detail.But although the genotype specifies necessary relations, it doesnot specify which cells should satisfy those relations in a particu-lar position. In this res pect, all the cells are interchangeab le, in thesense that in a street cons idered simp ly as a spatial pattern, all theconstituent houses could be interchanged without the patternbeing in the least bit changed. Now there are many cases where

this principle of interchangeability does not apply. In the villageform shown in Fig. 30 for example, each hut and each group ofhuts has to be in a specific position in the ring: opposite some,next to others, and so on.

Now formally sp eaking , what is happe ning in these cases is thatcertain cells in the system are being made noninterchangeablewith other cells. We are specifying not only that there has to besuch and such a relation between cells in this part of the system,but that it has to be a relation be twee n this p articular cell and thatparticular cell. In effect, by requiring labels to have particular

locations, we are including nonspatial factors in the necessarystructure of the pattern, that is, in its genotype. In such cases,therefore, we cannot write down the necessary relations of thegenotype simply by repeating the same restriction to the randomprocess. We must at each stage specify which label we are addingwhere and in what relation to others, and this means that thesentence describing the genotype will be much longer. Thelimiting case, at the opposite pole to the random process itself,  isthe case where the relation of each cell to every other has to bespecified. The addition of 'semantics' to the system then requiresus only to extend the principles used to describe 'syntax'. Syntax

and semantics are a continuum, rather than antithetical categor-ies.  This continuum, expressible in terms of longer and longer

Page 28: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 28/296

14 The social logic of space

models, in which more and more of the possible relations in thesystem are specified as necessary rather than contingent, runs (asrequired at the end of ii) both from non-order to order and fromnon -m eanin g to me aning. All are unifiable in the same framework:the conception of order in space as restrictions on an underlyingrandom process.

However, this model still did not amount to a proper theory ofspace, and even less did it offer useful tools of analysis. At best itperm itted the problem of space to be re-described in such a way asto bring together its various manifestations in a unified scheme,and to make differences less puzzling. In order to move on, two

further steps had to be taken. First, a method had to be found forusing the model to analyse real situations; and second, the modelhad to be embedded in a theory of how and why societiesgenerated different spatial pa tterns. As it turned out, the one led tothe other. Learning to analyse spatial patterns quantitatively interms of the model gradually revealed to us the outline of ageneral sociology of these dimensions, and in the end led to asocial theory of space.

The first steps towards quantification came through turning ourattention to the interiors of buildings. Here the important patternprop erty seeme d to be the perme ability of the system; that is, howthe arrangement of cells and entrances controlled access andmo vem ent. It was not ha rd to discover that, in their abstract form,the relational ideas that had been developed for settlements couldalso be used for describing permeability patterns. It was no morethan a one-dimensional interpretation of what had previouslybeen two-dimensional spatial concepts. The distinction betweendistributed and nondistributed relations became simply the dis-tinction between spatial relations with more than one, or only oneJocus of control with respect to some other space; while thedistinction between symmetry and asymmetry became the dis-

tinction between spaces that had direct access to other spaceswithou t having to pass through one or more intermediary spaces,and spaces whose relations were only indirect. These propertiescould, it turned out, be well represented by making a graph of thespaces in a building, with circles representing spaces and linkinglines represe nting e ntran ces, and 'justifying', it with respect to theoutside world, meaning that all spaces one step into the buildingwould be lined up on the same level, all those two deep at a levelabove, and so on (see Figs. 93 and 94). This m ethod of re presenta-tion had a n imm ediate ad vantage over the plan: it mad e the syntaxof the plan (its system of spatial relations) very clear, so that

com parisons could be made w ith other buildings according to thedegree that it possessed the properties of symmetry and asymmet-

Page 29: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 29/296

Introduction 15

ry, distributedness and nond istributednes s. It was also possible tocompare the relative position of differently labelled spaces in asample of plans, thus identifying the syntactic relations character-istic of different labels. More important, it led on to the realisation

that analysis could be deepened by learning to measure theseproperties.

For example, the degree to which a complex, seen from theoutside, was based on direct or indirect relations could becalculated by using a formula that expressed how far a patternapproximated a unilinear sequence in which each space leadsonly to exactly one m ore - the m axima lly indirect, or 'deep* form- or a bush, in which every space is directly connected to theoutside world - the maximally direct, or 'shallow' form (see Figs.35 and 36). This could then be repeated, but from every point

inside the building, giving in effect a picture of what the patternlooked like from all points in it, and from the outside. Once wedid this, very surprising and systematic variations began toappear. For instance, in analysing examples of English houses, the'relative asymmetry' - the degree to which the complex seen froma point possessed direct or indirect relations - from the room inwhich the best furniture was always kept always had a highervalue than that from the space in which food was prepared. Thisspace in turn always had a higher value than the space in whicheveryda y living and e ating took place (always provide d, of course,that the three spaces were distinct). This turned out to be true

across a range of cases, in spite of substan tial variation in b uildinggeometry and room arrangement. Fig. 98(a) shows this differencein a typical case, and Fig. 99 shows a range of examples.

The distributed-nondistributed dimension could also be quan-tified. Since the existence of distributed relations in a systemwould result in the formation of rings of spaces, then quantifica-tion could be in terms of how any particular space related to therings formed by the pattern. For example, in Fig. 98(a), thetraditional example has the main everyday living space on theprincipal ring in the system, and this ring is only a ring by virtue

of passing through the outside of the house. This location seemedimportant to the way in which the system was controlled, bothinternally and in the relation of inside to outside.

Investigation of a range of different types of buildings in thisway eventually suggested certain general principles for the analy-sis of build ings as spatial p attern s. First, space was intelligible if itwas understood as being determined by two kinds of relations,rather than one: the relations among the occupants and therelations between occupants and outsiders. Both these factorswere important determinants of spatial form, but even more sowas the relation between these two points of view. However, it

was exac tly the difference betwe en these p oints of view that couldbe investigated by analysing spatial relations both from points

Page 30: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 30/296

16  The social logic of space

inside the system and from the outside. Quantitative analysis thusbecame, in a natural way, a means of investigating some fun-damental aspects of the social relationships built into spatialform.

Second, there seemed to be certain consistencies in the way inwhich the dimensions of the syntax model related to socialfactors. The dimension of asymmetry was, it appeared, related tothe importance of categories. For example, a front parlour was aspace that traditionally was unimportant in everyday life, but ofconsiderable importance as a social category of space, for veryoccasional use. As a result, it was relatively segregated from theprincipal areas of everyday living, and this had the effect of givingit a high relative asymmetry: it was, of all the major spaces in thehouse, the least integrated. The distributed-nondistributed prop-

erties of the pa ttern, on the o ther han d, seem ed to refer to the kindof controls that were in the system. The everyday living space inthe houses in Fig. 99, for example, has the least relative asym-metry, but often the most control of relations with other spaces.Seen this way, it seemed that the social meaning of spaces wasactually best expressed in terms of the relationships in thephysical configuration. Once again, the distinction between syn-tax and semantics became blurred. It seemed we were dealingwith a unified phen om enon .

The m easurem ent of relations had becom e possible because thespatial structure of a building could be reduced to a graph, andthis in tur n w as possible beca use, by and large, a building consistsof a set of well-defined spaces with well-defined links from one toanoth er. In the case of settlements that is rarely the case. They are,it is true, always a set of primary cells (houses, etc), but there isalso a continuous structure of open space, sometimes regular,sometimes irregular, sometimes forming rings, sometimes tree-like,  which is not easily decomposable into elements for thepurpose of analysis. The problem of analysing settlements is theproblem of analysing this continuous space and how it is relatedto other elements.

This problem preoccupied us for a long time, but as had oftenhappened, the eventual answer was lying in what had alreadybeen formulated, in the nature of 'beads' and 'strings'. Theintuitive meaning of string was a space more marked by its linearextension than by its 'fatness'; in the case of beads, the space wasfatter, rather than linear. Formally, this meant something quitesim ple: a string was exten ded in one dimension rather than in two;whereas a bead was as fully extended in the second dimension asthe first. Once this was seen, then it became clear that it was notnecessary to identify spaces in a definite way, but to look at thesystem in terms of both its two-dimensional organisation and its

one-dimensional organisation, and then compare the two. Two-dim ensio nal o rganisation co uld be identified by taking the convex

Page 31: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 31/296

Introduction 17

spaces that have the best area-perimeter ratio, that is the 'fattest',then the next fattest, then the next, and continue until the surfaceis completely covered. The one-dimensional organisation canthen be identified by proceeding in the same way, first drawingthe longest straight- or axial - lines, then the next longest, andcontinuing until all convex spaces are passed through at leastonce and all axial links made. We thus arrive at both a convex ortwo-dimensional picture of the space structure, and an axial, orone-dimensional picture, both of which could be represented asgraphs.

Once this was the case, then quantitative analysis could pro-ceed on a richer basis than before, since not only could thesettlement be looked at from the point of view of its constituentcells and from the outside, but each of these relations could be

looked at in terms both of the convex and axial organisation ofspace. In effect, we were treating the public space of the settle-ment as a kind of interface between the dwelling and the worldoutside the settlement, the former being the domain of inhabitantsand the latter being the domain of strangers. How this interfacewas handled seemed to be the most important difference betweenone type of settlement and another; and such differences were afunction of the same two types of relation that had been soimpo rtant in analysing interiors: the relations among inhabitants,and the relations between inhabitants and strangers. Not onlywere the forms of public space in settlements governed by the

relationship between these two relations, but how differencesarose was governed by fairly simple principles. Because strangersto a settlement, or part of a settlement, are likely to be movingthrough the space, and inhabitants are such because they collec-tively have also more static relations to the various parts of thelocal system, the axial extension of public space accesses stran-gers to the system, while the convex organisation creates morestatic zones, in which inhabitants are therefore potentially morein control of the interface. This made it perfectly clear why beadyring type settlements as they grew increased not only the size of

their convex spaces, but also the axial extension of these spaces.The small town illustrated in Fig. 25, for example, is axially nodeeper from the outside than a small beady ring hamlet. It wasclear that the relation between inhabitants and strangers was a keydeterminant in how the settlement altered its principles of growthas it expanded. Important principles for the sociology of urbanspace in general followed from this. Urban market places inEuropean countries, for example, wherever they are geometricallyin the settlement, are nearly always axially shallow from theoutside, and have the curious, though intelligible property thatthe axial lines in their vicinity are strong and lead to the square

but never through it. Strangers are speeded on their way into thesquare, but once there are slowed down. The principle applies in

Page 32: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 32/296

18 The social logic o f space

a different way to a very large 'grown' town like London. In theoriginal dense parts, in and near the City of London, there wasalways a main system of streets and a smaller system of backalleys and courts: yet at both levels the governing principle wasthat important foci or meeting points were usually no more thantwo axial steps apart, implying that there would always be a pointfrom which both foci could be seen. Similar principles apply inthe much talked-of 'villages' of London, which have beenabsorbed into the u rban fabric. In general, they are local deforma-t ions,  convex and axial, of a more regular grid which extendsaway from them, and links them together by few axial steps. Avery common principle of urban safety is built into this principleof growth. The system works by accessing strangers everywhere,yet controlling them by immediate adjacency to the dwellings of

inhabitants. As a result, the strangers police the space, while theinhabitants police the strangers. This is a more subtle, but alsomuch more effective mechanism than that by which the groupingof inhabitants' dwellings alone is expected to produce a  self-

policing environment.

vi

It would seem clear then, that there is always a strong relationbetween the spatial form and the ways in which encounters aregenerated and controlled. But why should these patterns be so

different in different societies? Could it be that different types ofsociety required different kinds of control on encounters in orderto be that type of society; because if this were so, we couldreasonably expect it to be the deepest level at which societygenerated spatial form. Here we found the general sociology ofDurkheim (though not his writings specifically about space)profoundly suggestive.

10  Durkheim had distinguished between

two fundamentally different principles of social solidarity orcohesion: an 'organic' solidarity based on interdependencethrough differences, such as those resulting from the division of

labour; and a 'mechanical' solidarity based on integration throughsimilarities of belief and group structure. This theory was pro-foundly spatial: organic solidarity required an integrated andden se space, where as mec hanica l solidarity preferred a segregatedand dispersed space. Not only this, but Durkheim actually locatedthe cause of the different solidarities in spatial variables, namelythe size and density of populations. In the work of Durkheim, wefound the missing component of a theory of space, in the form ofthe elements for a spatial analysis of social formations. But todevelo p these initial ideas into a social theory of space, we had togo back once again into the foundations , and consider the sociolo-

gy of the simplest spatial structure we had found it useful toconsider: the elementary cell .

Page 33: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 33/296

Introduction 19

Now the important thing about the elementary cell is that it isnot just a cell. It has an outside as well as an inside, and of itsoutside space at least one part is unlike the remainder in that it isadjacent to the entrance to the cell: that is, it forms part of the

threshold. T he sim plest b uilding is, in effect, the structure sh ownin Fig. 10(c), consisting of a boundary, a space within theboundary, an entrance, and a space outside the boundary definedby the entrance, all of these spaces being part of a system whichwas placed in a larger space of some kind which 'carried* it. Allthese elements seemed to have some kind of sociological refer-ence: the space within the boundary established a categoryassociated with some kind of inhabitant; the boundary formed acontrol on that category, and maintained its discreteness as acategory; the world outside the system was the domain of poten-

tial strangers, in contradistinction to the domain of inhabitants;the space outside the entrance constituted a potential interfacebetween the inhabitant and the stranger; and the entrance was ameans not only of establishing the identity of the inhabitant, butalso a means of converting a stranger into a visitor.

Some of the consequences of the sociology of the elementarycell - the relations betw een inhabitants, and between inhabitantsand others - have already been sketched. But the most importantof all lies in the distinction between inside and outside  itself; thatis ,  in the distinction between building interiors and their collec-tive exteriors. There are, in effect, two pathways of growth from

the elementary cell: it can be by subd ividing a cell, or accumulat-ing cells, so that internal permeability is maintained; or byaggregating them independently, so that the continuous per-meab ility is m aintained externally. When the first occurs, we callit a building, and when the latter, a settlement. Now these twotypes of growth are sociologically as well as spatially distinct, inthat one is an elaboration of the sociology of the inside of theelementary cell, and the other an elaboration of the sociology ofthe outside. Building interiors characteristically have more cate-goric differences between spaces, more well-defined differences

in the relations of spaces, and in general more definition of whatcan happen and where, and who is related to whom else. Interiorspace organisation might, in short, have a rather well-definedrelation to social categories and roles. The space outside build-ings,  in contrast, usually has far fewer categoric differencesmapped into spaces, more equality of access from the cells thatdefine the system, fewer categoric differences among those cells,and so on. At the same time, it has less control, in that whilebuildings tend to grow by accumulating boundaries, settlementspace tends to grow by accumulating spaces into one continuoussystem. Settlement space is richer in its potential, in that more

people have access to it, and there are fewer controls on it. Wemight say it is more probabilistic in its relation to encounters,

Page 34: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 34/296

20 The social logic of space

while building interiors are rather more deterministic. The differ-ences between inside and outside, therefore, are already differ-ences in how societies generate and control encounters.

In their elementary forms, in effect, buildings participate in alarger system in two ways: first, in the obvious way they arespatially related to other buildings; and also, less obviously, byseparating off systems of categories from the outside world - usingspatial separation in order to define and control that system ofsocial categories - they can define a relation to others by concep -tual analogy, rather than spatial relation. The inhabitant of ahouse in a village, say, is related to his neighbours spatially, inthat he occupies a location in relation to them, but also he relatesto them conceptually, in that his interior system of spatialisedcategories is similar to or different from those of his neighbours.

He relates, it might be said, transpa tially as well as spatially. Nowthis distinction is very close to that between mechanical andorganic solidarity. We might even say, without too much exag-geration, that interiors te nd to define m ore of an ideological space,in the sense of a fixed system of categories and relations that iscontinually re-affirmed by use, whereas exteriors define a trans-actional or even a political space, in that it constructs a more fluidsystem of encounters and avoidances which is constantly re-negotiated by use. Alternatively, we might, without stretchingthings too far, define the exterior space as that in which thesociety is produced, in the sense that new relations are generated,

and the interior space as that in which it is reproduced. Theformer has a higher degree of indeterminacy, the latter morestructure.

Now while all societies use both possibilities to some degree, itis often clear that some social formations use one more than theother. In our own society, for example, a suburban lifestyle ischaracterised by values which are more strongly realised inmaintaining a specific categoric order in the domestic interior,than in maintaining strong systems of local external spatialrelations. We can at least distinguish a certain duality in the ways

in whic h societies generate space, and this duality is a/un ction  ofdifferent forms of social  solidarity. At the extremes, these differ-ences are based on opposing principles; the one must excludewhat the other requires. One requires a strong control on bound-aries and a strong internal organisation in order to maintain anessentially transpatial form of solidarity. The other requires weakboundaries, and the generation rather than the control of events.The former works best when segments are small and isolated, thelatter when the system is large and integrated.

But there is another dimension of difference, no less fun-damental, and one which makes the whole relation of society tospatial form one degree more complex. The duality of insidemapping ideology and outside mapping transactional politics, is

Page 35: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 35/296

Introduction 21

only the case  insofar as the system is considered as a local-to-global phenomenon  - that is, insofar as it con stru cts a globalpattern from the inter-relations of the basic units. Insofar as asociety is also a global-to-local phenomenon - that is, insofar as

there is a distinct global structure over and above the level ofeveryday interaction - then the logic of the system reverses  itself.

One set of spaces is produced whose purpose is to define anideological landscape through its exterior, and another set whosepurpose is to produce and control a global politics through itsinterior; essentially, shrines of various kinds and meeting placesof various kinds are the first specialised structures of the globalformations of a society.

From this distinction, a second duality follows, as pervasive asthe first: the more  the  system  is  run  from the  global  to the local,

then the more the reversed logic prevails over the local-to-globallogic.  The state can, for our purposes, be defined here as a globalformation which projects both a unified ideology and a unifiedpolitics over a specific territory; and the m ore it acts to realise thisaim, then the more the exterior is dominated by a system ofideologically defined structures, and the more the interiors aredominated by controlled transactions. The distinction betweenexterior and interior space becomes the distinction betweenpower and control, that is, between an abstractly defined systemof power categories which, prior to their projection into a unifiedsymbolic landscape, have no form of spatial integration, and

systems for the reproduction of social categories and relationswhich mould the organisation of interiors.

11

The dimensions of indetermination and structure change placein the global-to-local logic: the exterior space is the space of struc-tured and immutable categories; while the internal space is thespace of persona l neg otiation, with th e difference that the negotia-tion is always betw een peop le wh ose social identities form part ofthe global system and others whose identities do not. Fun-dam ental to the global-to-local system is the existence of inequali-ties,  realised everywhere in the internal and external relations of

buildings: inequalities between teachers and taught, curers andpatients and so on.

Urban form itself illustrates this duality. A town classicallycomprises two dissimilar spatial components: the space of thestreet system, which is always the theatre of everyday life andtransactions, and the space of the major public buildings andfunctions. The former creates a dense system, in which publicspace is defined by the buildings and their entrances; the latter asparse system, in which space surrounds buildings with fewentrances. The more the global-to-local dimensions prevail, themore the town will be of the latter type, and vice versa. The

fundamental differences between administrative capitals andbusiness capitals is related to this shift in the social logic.

Page 36: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 36/296

22 The social logic o f space

This  is  also  the  difference b etween ceremonial centres and

centres of production as  proto-urban forms. The ground-plan of

Tikal,  the Maya ceremonial centre sh own  in Fig.  14, is a goodexample  of the ideological landscape created  by the global-to-

local log ic. The primary ce lls in th is system are inward facing andgrouped  at  random  in the  vicinity  of the  ceremonial centre,seemingly ignoring  its  structure.  In spite  of  their density, theydefine  no  global system  of  space.  The  global system  is  definedonly by the  relations between  the  major ceremonial buildings,linked  as  they  are by  'causeways'.  In both se nses this  is the

opposite of the classica l European idea  of a  medieval town, inwhich it is the  primary cells that define  the global structure of

space, with main ceremonial buildings interspersed  but not

themselves defining  the  global order of the town.  The ongoing

deformation  of  the modern urban landscape into a landscape ofstrongly representational forms (for exam ple, 'prestige' buildings)surrounded  by a controlled landscape of zones and categories is,

in the end, closely related to this conception.

outside relations —+-

inside relations  • •

local-to-global

11

the space of

organic solidarity

>

the space of /

mechanical solidarity

global-to-local

11

the space of power

/

the space of control

The sim ple diagram summ arises how these basic social dynam icsare articulated by the social potential of space. Space is, in  short,everywhere a function of the forms of social solidarity, and theseare in turn a product of the structure of society. The realisation of

these differences  in  systematically different spatial forms  is be-cause,  as  Durkheim showed, society  has a  certain spatial logicand, as we hope  we  have shown, because space  has a certainsocial logic to it.

vii

This schematic analysis summarises  the argument presented inthis book as to  the fundamental dimensions of difference  in howsocieties determine space. The question therefore arises in a newform: is there any sense in which space also determines society?

This question is not the subject of the book. But since the text wascompleted,  the  continuing research programme at the Unit for

Page 37: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 37/296

Introduction 23

Architectural Stu dies in U niversity C ollege London has led us toan affirmative - if cond itional - answer to that vexed question .Space does indeed have social consequences - but only if socialis the right word for what we have discovered.

Briefly, what we have don e is to take a number of urban areas -traditional areas of street pattern and a range of recent estates andgroups of estates - and mapp ed and analysed them using thealpha-analysis technique set out in Chapter 3. Then we observedthem repeatedly in terms of how many static and moving peoplewere to be found in different parts of the system.

The first thing we found out was that such observations aremuch more reliable and predictable than ordinary experiencewould suggest. Observers were quickly able to anticipate withsome accuracy h ow few or how many people they wou ld be likely

to encounter in different spaces. To test this, two observers w ouldstart from the same point and walk round a selected route inopposite directions and then compare observations. These wereoften remarkably similar, even though the two observers couldrarely have observed the same people. The second finding wasthat there was remarkably little variation with the weather, andalso remarkably little variation in the pattern of distribution withtime of day. Relatively few observations, it seemed, would give afairly reliable picture of the system.

Much more striking were the differences in the densities ofpeople observed in the different types of area. This was not a

function of the density of people living in the area. For example,we compared a rather quiet street area of North London with afamous low-rise, high-density estate nearby (both examples areused for analysis in Chapter 3) and discovered that in spite of thefact that the estate had three times the density of population of thestreet area, the observers encountered only one third of thenumber of people - and many of these the observers were onlyaware of for a much shorter time than in the street area. Takinginto account all factors, there was a difference between the publicspace of the old and new in terms of awareness of people by a

factor of about nine. These differences and general levels havesince been verified in other cases, and seem fairly stable. Daytimein a new area (even where this has been established for severaldecades) is like the m iddle of the night in a traditionally organisedarea. From the point of view of awareness of others, living on eventhe most progessive and low-rise estate is like living in perpetualnight.

Some understanding of why this might be the case came fromcorrelating people densities with the syntactic measures of in-tegration* and 'control' for each space. Every traditional systemwe h ave looked at, how ever piecem eal its historical d evelopmen t,

showed a statistically significant (better than the 0.05 level)correlation between the patterns of integration values and the

Page 38: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 38/296

24 The social logic of space

densities of people observed, with stronger correlations withmoving people. There were always livelier and quieter areas,more or less along the lines of our integration and segregationmaps (see Chapter 3) - but everywhere there were always at leastsome people to be seen.

In the new areas no such correlation has been found - with thesingle exception of one extraordinary design (the Alexandra Roadestate at Swiss Cottage, London). The relation of people to spaceseems to approach randomness. Not only, i t seemed, was theexperience of others substantially diminished by the new spatialforms, but also it had lost its globally ordered pattern. Experienceof people -other than a general lack of experience - is no longerinferable from the organisation of space and everyday movementin it.

What, then, was responsible for the strong correlation in onecase and its absence in the other? In the present state of incom-plete knowledge, two possibilities look promising. First, thecorrelation in tradition al systems looks as though it is the result ofthe strong integrating cores that link the interior of the systemwith the outside, thus producing more journeys through thesystem - and therefore longer journeys which, because of theirlength, are more likely to select integrating spaces as part of ashortest route, since these by definition will be shallower to otherspaces.

Second, computer experiments have shown that in traditionalsystems with the 'normal' degree of shallowness and ringiness themost powerful correlations between spatial pattern and move-ment densities (usually above 0.9) are produced by combining theglobal measure of integration with the local measure of control.Where the integration and the control system coincide the correla-tion is good, where they do not it breaks down. In other words, tothe ex tent that the in tegration core is also a local control stru cture,then to that extent the density of potential encounters is inferablefrom the space pattern.

This is, of course, only hypothesis at this stage, and research is

continuing. But if, as we expect, it turns out to be a keydeterminant, then it will substantiate our general argument thaturban life is the product of the global order of the system, and ofthe p rese nce of strangers as well as inhab itants, and is not a resultof purely local patterns of spatial organisation. In fact the morelocalised, and the more segregated to create local identities, byand large the more lifeless the spaces will be.

Whatever the fate of this explanatory hypothesis, one thingseems already to be sure: that architecture determines to asubstantial extent the degree to which we become automaticallyaware of others, both those w ho live near and strangers, as a result

of living out everyday life in space. The differences between onesystem and another are substantial, and appear to correlate with

Page 39: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 39/296

Introduction 25

ordinary verbal accounts of isolation and alienation, which areoften vaguely said to be the produ cts of architectur e. The questionis :  are these effects  social  effects, in any important sense. Accord-ing to present canons of sociological method it seems unlikelythat they could be accepted as such. Society, it is said, beginswith  interaction,  not with mere co-presence and awareness.

But we wonder if this is really so. The introduction of theconcept of randomness into spatial order allowed us to buildmodels that eventually led to an effective analysis of social orderin spac e. We strongly susp ect tha t the same m ay be true of societyitself,  both in the sense that the notion of randomness seems toplay as important a structural role in society as it does in space -and in the sense that random encounters and awareness of othersmay be a vital motor of social systems at some, or even all levels.

Whatever the case, there seems no doubt that this basic, unstruc-tured awareness of others is powerfully influenced by architectu-ral form, and that this must now be a major factor in design.

Page 40: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 40/296

The problem of space

S U M M A R Y

The aim  of this chapter is to argue for, and to establish, a framework for

the rede/inition of the problem of space. The comm on 'natural'-seemingdefinition sees it as a matter of finding relations between 'social structure'and 'spatial structure'. However,  few  descriptions  of  either type  of

structure have succeeded  in  pointing towards lawful relations betweenthe two. The absence of any general models relating spatial structure tosocial formations  it is  argued, has its roots in the fundamental  way in

which the problem is conceputalised (which in turn has its roots in the

ways in which social theorists have conceptualised society), namely as arelation between  a  material  realm  of  physical space, without socialcontent in itself, and an abstract realm of social relations and institutions,without  a  spatial dimension.  Not only  it is  impossible  in  principle to

search  for necessary relations between a material and an abstract entity,but also  the  programme  is  itself contradictory. Society  can  only havelawful relations  to space  if  society already possesses  its own intrinsicspatial dimension;  and  likewise space  can only  be  lawfully related tosociety  if it can  carry those social dimensions  in its  very form. The

problem definition  as it stands has the effect  of  desocialising space and

despatialising society. To remedy this, two problems  of description mustbe solved. Society must be described  in terms of its  intrinsic spatiality;space m ust be described in terms of its intrinsic sociality. The overall aimof the chapter is to show how these two problems of description can be

approached,  in order to build a broad theory of the social logic of spaceand the spatial logic of society. The chapter ends w ith a sketch of how theproblem may be set into a framework  of  scientific ideas adapted speci-fically for this purpose.

Society and space

In an obvious way, human societies are spatial phenomena: they

occupy regions of the earth's surface, and within and between

these regions material resources move, people encounter each

other and information is transmitted. It is through its realisation

in space that we can recognise that a society exists in the first

place. But a society does more than simply exist in space. It also

takes on a definite spatial form and it does so in two senses. First,

it arranges people in space in that it locates them in relation toeach other, with a greater or lesser degree of aggregation and

26

Page 41: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 41/296

The problem of space  27

separation, engendering patterns of movement and encounter thatmay be dense or sparse within or between different groupings.Seco nd, it arranges spa ce itself by mean s of buildin gs, boun darie s,paths,  markers, zones, and so on, so that the physical milieu ofthat society also takes on a definite pattern. In both senses asociety acquires a definite and recognisable spatial order.

Spatial order is one of the most striking means by which werecognise the existence of the cultural differences between onesocial formation and another, that is, differences in the ways inwhich members of those societies live out and reproduce theirsocial existence. These might be differences between a societyliving in dispersed, highly subdivided compounds and anotherliving in densely aggregated, relatively open villages; or differ-ences between a city in which dwellings are directly related to the

system of streets, as in London, and another in which closedcour tyards interru pt this direct relation, as in Paris. In either case,spatial ord er ap pear s as a part of culture , because it show s itself tobe based on generic principles of some kind. Throughout thesocial grouping , a similar family of characteristic sp atial themes isreproduced, and through this repetition we recognise  ethnicity  inspace. At a general level, everyday language recognises thispervasive relation between spatial formations and lifestyles byusing words like urban, suburban, village, and so on with both aspatial and a behavioural dimension to their meaning. In everydaylife and language, it seem s, the exp erience of spatial formations isan intrinsic, if unconscious dimension of the way in which weexperience society itself. We read space , and anticipa te a lifestyle.

But however pervasive, the link between society and spacecannot be limited to questions of culture and lifestyle. Otherevidence suggests that space is bound up even more deeply withthe ways in wh ich social formations ac quire and change their veryform. The most far-reaching changes in the evolution of societieshave usually either involved or led to profound shifts in spatialform, and in the relation of society to its spatial milieu; theseshifts a ppe ar to be not so muc h a by-produc t of the social changes,

but an intrinsic part of them and even to some extent causative ofthem. The agricultural revolution, the formation of fixed settle-ments, urbanisation, the early development of the state, indus-trialisation, and even the growth of the modern interventioniststate,  have been associated with changes in the morphology ofsociety in which social and spatial changes appear almost asnecessary dimensions of each other. Different types of socialformation, it would appear, require a characteristic spatial order,just as different types of spatial order require a particular socialformation to sustain them.

Recently a new complication has been added to the relationbetween society and space in the form of a belief that, by carefulforethought and conscious control, both the physical environmen t

Page 42: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 42/296

28 The social logic o f space

and the spatial form of society can be made more efficient,pleas urab le, and supp ortive of the workings of society. As a resultof this  belief,  we now have intervening in the relationshipbetween society and space a kind of moraJ  science  of design -'m ora l' in the sense that it mu st act on the basis of some co nsens usof what is agreed to be the good, and 'science' in the almostcontradictory sense that its actions must be seen to be based onsome kind of analytic objectivity. Because its institutional settingis normative and active rather than analytic and reflective, thismoral science does not see it as a central concern to propose anddevelop better theories of the relationship between society andspace. Rather it is forced to act as though this relation were wellunderstood and not problematical.

But even if this moral science does not require an explicit

theory of society and space, insofar as its actions are consistent itimplies one. The existence of this consistency can hardly bedoubted, since everywhere the effect of its intervention is to effecta transformation in the spatial order of society no less through-going and systematic than in any of the earlier phases of revolu-tionary change. The ideal of this transformation, and presumablyits eventual point of aim, would seem to be a sparse landscape offree-standing buildings, or groups of buildings, arranged intorelatively bounded and segregated regions, internally subdividedand hierarchically arranged, and linked together by a specialisedand separate system of spaces for movement. The relationship of

such a land sca pe to its predecessors can only be conjectural, sincein its physical form it is virtually the opposite of the previoussystem in which densely and contiguously aggregated buildingsdefined, by virtue of their positioning alone, a more or lessdeformed grid of streets that unified the system into a uniformlyaccessible whole. The substitution of the notion of estate for thatof street as the central organising concept encapsulates thistransformation: a system of estates carries with it a high degree ofsegregation, a system of streets a high degree of integration.

It is now clear that the first outcome of this moral science and

the transformation of space that it has sponsored is not environ-mental improvement but an environmental pathology of a totallynew and unexpected kind. For the first time, we have the problemof a 'designed' environment that does not 'work' socially, or evenone that generates social problems that in other circumstancesmight not exist: problems of isolation, physical danger, commun-ity decay and ghettoisation. The m anifest ex istence of this pathol-ogy has called into question all the assumptions on which the newurban transformation was based: assum ptions that separation w asgood for community, that hierarchisation of space was good forrelations between groups, and that space could only be important

to society by virtue of being identified with a particular, prefer-ably small group, who would prefer to keep their domain free of

Page 43: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 43/296

The problem  of space  29

strangers. However, although  the  entire conceptual structure of

the moral science is in disarray, no  clearly articulated alternativeis proposed, other than  a return  to  poorly understood traditionalforms.  Nothing is proposed because nothing is known of what the

social consequences  of  alternatives would  be, any  more thananything is properly understood of the reason for the failure of the

current transformation.

In this situation,  the  need  for a  proper theory  of the  relationsbetween society and its spatial dimen sion is acute. A social theoryof space would account first  for the  relations that  are  found  in

different circumstances between  the two  types  of  spatial ordercharacteristic  of  societies —  that is, the  arrangement  of  people  in

space and the arrangement  of  space itself  - and  second  it  wouldshow  how  both were  a  product  of the  ways  in  which  a  society

worked  and  reproduced  itself. Its  usefulness would  be  that  itwould allow designers to speculate in a more informed  way aboutthe possible consequences  of  different design strategies, while at

the same time adding a new creative d imension  to  those specula-t ions.  But  more important,  a  theory would permit  a  systematicanalysis  of  experiments that would enable  us to  learn fromexperience,  a  form  of  learning that until  now has not  been  a

serious possibility.

Unfortunately, because  of the  pervasive interconnections thatseem  to  link  the nature  of  society with  its  spatial forms,  a  socialtheory  of  space cannot avoid being rooted  in a  spatial theory of

society. Such  a  theory does  not  exist. Although there  are  somepreliminary attempts  to  link society with  its  spatial manifesta-tions (reviewed briefly  in the  Introduction), there  is no  theorywhich purports  to  show  how a  society  of its  very nature givesitself  one form of  spatial order rather than another. Such a theory,if  it  existed, would probably also  be a  theory  of the  nature of

society itself, and the  fact that such a theory does not yet exist is a

reflection  of  some very fundamental difficulties at the  foundationof  the  subject matter  of  sociology  itself,  difficulties which  on a

close examination,  as we  shall  see,  turn  out to be of a  spatial

nature.

The problem of space

'Nowhere', wrote Herman Weyl, 'do mathematics, natural sciencesand philosophy permeate  one  another  so  intimately  as in the

problem  of s p a c e /1 The reason is not difficult  to  find. Experience

of space is the foundation  and framework  of all our knowledge of

the spatio-temporal w orld. Abstract thought by its very na ture is an

attempt  to  transcend this framework  and  create planes of  experi-ence, which are at once less directly depe nden t on the immediacy

of spatio-temporal experience  and  more organised. Abstractthought  is  concerned with  the  principles  of order underlying the

Page 44: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 44/296

30 The social logic of space

spatio-temporal world and these, by definition, are not given toimmediate experience. In the problem of space, abstract thoughtaddresses itself again to the foundations of its experience of theimmediate world. It returns, as it were, to its original spatio-temporal prison, and re-appraises it with all its developed powerof abstraction.

The consequences of this re-appraisal have been far-reaching.The origins of what we today call science lie in the developmentof a mathematical system capable of representing and analysingthe abstract properties of space in a comprehensive way: Euclid-ean geometry. Geometry provided the first means of interrogat-ing the spatio-temporal world in a language whose own structurewas consistent and fully explicit. In the understanding of spacethe advance of knowledge - science - and the analysis of

knowledge - philosoph y - became inextricably intertwined. Spe-culation about the nature of space inevitably becomes speculationabout how the mind constructs its knowledge of space and, byimplication, how the mind acquires any knowledge of the spatio-temporal world.

It is not only in the higher regions of mathematics, scienceand philosophy that the problem of space appears. It appearswherever abstract thought appears, and not all abstract thought isscientific or philosophical. 'Magical' thought, for example, is notless abstract than science, and on occasions, in astrology forexample, it is no less systematic in its use of a consistent logic.

Magical thought differs from what we might loosely term rationalthoug ht not by its preference for consistency an d logic, but by theassumption that it makes about the relation between abstractthought and the spatio-temporal world. Rational thought, forexample, assumes that immaterial entities may be imagined, butcannot exist; everything real must have location, even if (as withthe case of the 'ethe r') it is everyw here.

Likewise, rational thought insists that immaterial relationsbetween entities cannot occur. Every relation of determination orinfluence must arise from the transmission of material forces of

some kind from one location to another. Magical thought assertsthe two contrary propositions: that immaterial entities can exist,and that immaterial relations of determination or influence mayhold between entities. Belief that it is possible to harm or cure adistant person by performing actions on an effigy, or to affect adistant event by the power of thought, is a specific denial of thetwo basic postulates of rationality; and these two postulatesconcern the legitimate forms that abstract thought about thespatio-tem poral world can take. In essence, rational thought insistson a continuity between our everyday practical experience of howthe world works and the more abstract principles that may inhere

in it. It holds that common sense intuitions, founded on physicalcontact w ith th e w orld, are reliable guides to all levels of abstract

Page 45: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 45/296

The problem of space  31

thought about the world. Magic denies this and posits a form of

thought and a form of action in the world that transcend the

spatio-temporal reality that we experience.

But just as not all abstract thought is rational, so not all rational

thought is scientif ic. In fact in the history of science, the more

science has progressed, the more it has been necessary to make a

distinction between scientif ic thought and - at the very least - a

strong version of rational thought that we might call dogmatic

rationality.  Dogm atic rationality m ay be defined as rational

thought that insists on the two basic spatio-temporal postulates of

rational thought to the point that no speculation about the world

is to be a l lowed unless the principle of cont inuity between

common sense intuit ion and underly ing order in nature is obeyed

to the letter. This distinction became necessary as soon as science,

in order to give a satisfactory account of underlying order innature in mathematical terms, had to posit the existence both of

ent it ies and relat ions whose spat io- temporal form could not be

imagined, and perhaps even entai led contradict ions.

The tension between scient if ic and rat ional thought is shown

for exam ple in the object ions to New ton's cosm ological theories at

the t ime of their appearance. As Koyre shows, Leibniz objected to

Newton's theories on the grounds that , while they appeared to

give a sat isfactory mathem atical descript ion of ho w bod ies m oved

in relation to each other, in so doing they did vio le nce to com m on

sense concept ions of how the system could actually work:

His p hiloso phy appears to me rather strange and I cannot believe it can bejustified. If every body is heavy, it follows (whatever his supporters maysay, and however passionately they deny it) that Gravity will be ascholas tic oc cult quality or else the effect of a miracle . . . It is notsufficient to say that God has made such a law of nature, therefore thething is natural.  It is necessary that the law should be capable of beingfulfilled by the nature of created things. If, for exam ple, God were to givea free body the law of revolving round a common centre, he would eitherhave to join it to other bodies which by their impulsion would make italways stay in a circular rrbit, or put an Angel at its heel.

2

A n d e l s e wh e r e :Thus we can assert that matter will not naturally have [the faculty of]attraction . . . and will not by itself m ove in a curved line because it is notpossible to conceive how this could take place there, that is to explain itmechanically: whereas  that which is  natural must be  able to  becomedistinctly conceivable, [our emphasis]

3

The assumptions about the g iven world which are made in

order to rescue common sense from magic are not therefore

necessarily carried through into the more abstract realms of

science. In a sense the advance of science revives problems - of

action at a distance, of apparently immaterial entit ies and forces,

of patterns whose existence cannot be doubted but whose reasons

for exist ing appear inexplicable - which seemed to have been

Page 46: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 46/296

32  The social logic of space

buried along with magical thought. And these problems are oftencentred about one fundamental issue: that of the nature and orderof space and, in particular, how systems can work as systemswithout apparently possessing the kind of spatial continuity thatwould satisfy dogmatic rationalism.

In sociology the problem reappears in another, exacerbatedform. The most striking property of a society is that, although itmay occupy a continuous territory, it cannot be regarded as aspatially continuous system. On the contrary, it is a systemcom posed of large num bers of auton om ous, freely m obile, spatial-ly discrete entities called in divid uals . We do not have available inrational thought the concept of a system composed of discreteindividuals. On the contrary, that such a collection can be asystem at all runs counter to the most deeply held prejudices of

rationality about what a system - any system - is: that is, aspatially c ontin uou s wh ole. Society, it appears , if it is a system atall,  is in some sense a discontinuous or discrete  system,  trans-cending space; that is, the type of system that was disqualifiedfrom the domain of rational thought with the elimination ofmagic. It works - at least in some importan t respects - witho utconnections, without material influence, without physicalembodiment at the level of the system.

This presents sociological theory with a difficult problem, withphilosophical as well as scientific implications: it cannot take forgranted that it knows what kind of an entity a society is, or even ifsociety exists at all in any objective sense, before it can begin tospec ulate as to the natur e of its laws. It has to formulate a solutionto the problem of conceptualising how a discrete system can be areal system at all, before it can begin to speculate about itspossible lawfulness. The question hinges around the reality of thesystem, since it is here that the most paradoxical difficulties arefound. Is the discrete system real or does it only exist in theimaginations of individuals? If it is real, then in what sense is itreal? Is it real in the sense that an object or an organism is real?And if it is not real in this sense, then in what sense can we

legitimately use the word real? If, on the other hand, the discretesystem is not actually real, but somehow simply a product of theminds of individuals, then in what ways may we expect it to begoverned by laws? It seems we cannot have it both ways. Eitherthe system is real, in which case it is overdetermined by beingredu ced to a mere physica l system of some kind; or it is imaginaryin which case it is underdetermined, since it is hard to conceivehow there could be laws governing an imaginary entity.

For most practical purposes, including that of conductingresearch, the sociologist is well advised to avoid these philo-sophical problems and shelter behind convenient fictions. Theproblem is avoided, for example, if it is resolved to treat society asthough it were no more than a collection of individuals, with all

Page 47: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 47/296

The problem of space  33

that is distinctively social residing in the mental states, subjectiveexperiences and b ehaviour of those individuals. In such a resolu-tion, 'structures' above the level of the individual will tend to beof a purely conceptual nature, or constitute a communications

system of some kind. Such entities may be mental constructs, butat least they can be discussed. Alternatively, the problem can beavoided in principle by introducing some kind of spatialme tapho r at the level of society itself, usually that of some kind ofquasi-biological org anism. N o one need believe that society reallyis a kind of organism in order for the metap hor to make it possibleto discuss society as though it were such a system. Neither tacticis a philosophical solution to the problem of how a discretesystem can exist and have its own laws, but both save rationalityand perm it sociology to proceed as though it were not on the brink

of this vast epistemological chasm.4

Unfortunately, from the point of view of a social theory of spaceneither stance is workable. The reason is simple. From the pointof view of spa ce, the sp atial pro blem of the discrete system is not aphilosophical problem but a scientific one. It is intrinsic to theproblem to be solved. If we wish to build a theory of how society,through its internal dynamics, produces order in space, then wemu st have som e conce ption of what k ind of spatial entity a societyis in the first place. We cannot deal with the spatial form of animaginary object, nor can w e deal with th e spatial dimen sion of anentity that is already an object, as would be the case if theorganism theory were true. The spatial theorist is thereforetrapped in the same impasse as has prevented sociology fromdeveloping a spatial sociology. He cannot use an existing spatialtheory of society, because none exists. Nor can he hope to solvethe philosophical problems of social theory before beginning onhis own enterprise. In effect, he is forced to improvise. He cannotdo without some conception of how a discrete system could bereal and produce, through its lawful internal working, an outputin the form of a realised spatial order. He must therefore try toskirt around the problem by giving some attention to the

elementary dynamics of discrete systems.

The logic of discrete sy stem s

If we attend first to very simple examples and gradually exploreslightly more complex cases, there need be nothing at all myste-rious about discrete systems or about their acquisition of a realspatial form. Discrete systems, composed of nothing but mobileindividuals, can quite easily form themselves into global systemswhose existence as objective realities need not be doubted. Byexamining simple cases we can begin to build a picture of how

such systems may arise, be lawful and have different types ofstruc ture. To begin, consid er an exam ple given by Rene Thorn: the

Page 48: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 48/296

34  The social logic of space

cloud of midges.5 The global form, the 'clou d', is made up o nly of

a collection of individual midges who manage to constitute arecognisable cloud that remains stationary for considerableperiods of time. This giobal form retains a certain 'structuralstability' (to use Thorn's phrase) so that we can see it and point toit in much the same way as we would see or point to an object,even though the constitutents of that global form appear to benothing but randomly moving, discrete individual midges. Howcan such a situation arise? The answer could be quite simple. Ifeach midge moves randomly until half its field of vision is clear ofmidg es, then m oves in the direc tion of midges, the result will be astable cloud. We have, in effect, put a restriction on  the random-ness  of individual movement, and the global form has arisen as acons eque nce of this. Now in this case, saying that the global form

can arise  from indiv idua l behav iour is not the same as saying thatit is reducible to individual behaviour, since the model showshow the cloud comes to exist as an objective reality. The globalform is real, even thoug h com posed only of discrete individu als. Itarises from something like a relation of implication between thelocal and global properties of collections of midges.

Of cou rse, a cloud of midges is nothing like a society, but it doeshave a number of formal properties which may be of interest.First, although the global form is undoubtedly real, no individualmidge n eed have a conc eption of a cloud in order to realise it. Thecloud is the global, collective product of a system in whichdiscrete organisms follow a purely local rule, that is, a rulerelating each midge only to whatever other individuals happen tobe in the vicinity at the time. The design of the global object, as itwere, is not located in a particular spatio-temporal region: it isdistributed throughout the collection. Yet it is not enough to saythat th e re striction on ra ndo mn ess - that is, the local rule fol-lowed by individual midges-is what constitutes the system. Theexistence of the rule does not by itself produce the global result.The cloud results from the rule being realised in spatio-temporalreality in a process where random movement is assumed in the

first place as a background to the opera tion of the rule. Given this,global order emerges of its own accord from a purely locallyordered system. The system in effect requires both a spatio-temporal embodiment, and a randomly operating backgroundprocess in order to produce its order.

Seen in this way, discrete systems can both be objectively realand have definite structure, even though that structure is neitherdeterminative nor at the level of the global system   itself.  More-over, the system is fully externa l to indiv idua ls, while at the sam etime being entirely dependent on individuals for its existence andcomposition. The system depends on abstract rules; but it alsodepends on the embodiment of these rules in a dynamic spatio-temporal process. These rules do not simply prescribe what is to

Page 49: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 49/296

The problem of space 35

occur in th e ma nn er of a ritual. This w ould be only a limiting caseof such a system: one from which the random background processhad been entirely removed. The operation of the rules within aspatio-temporal process which is otherwise operating only ran-dom ly gives rise to new levels of order in the system because thereis a random background process. If there is no random back-ground, then there is no gain in global order. In such a system thenew levels of order are not necessarily conceived of at any stageby any individual participating in the system. At the same timeboth the rules and the higher-level emergent orders are objectiverealities independent of subjects.

In the light of this example, we may next consider a case wherewhat is being arranged is not individuals, but space itself,  namelya simple process by which a complex composite object can be

generated from a collection of simple single objects, rather as asettlement can be generated by aggregating together a collection ofhouses. The elementary objects are square cells; the rule ofaddition of cells is a full facewise join (Fig. l(a)), with all otherjoins,  such as the vertex join (Fig. l(b)), excluded; and theaggregation proces s is one in w hich objects are added ran dom ly towhatever is already aggregated subject to only one restriction:each cell must retain at least one of its four 'walls' free from othercells.  By the time a hundred cells have been aggregated, thisgenerative process (which the reader may try for himself withpaper and pencil) will look something like Fig. 2.

Whatever the actual sequence of placing of objects, providedthe process is properly randomised, the same generic global formwill resu lt: a den se an d co ntinu ous aggregate of cells containing anumber of void spaces - rather like courtyards - some of whichare the same size as the cells, some twice the size, and some evenlarger. As the object grows larger 'holes' will appear.

(a) (b )

Fig. l

rail

-;82i

86 ;

85 ;

63

:87*

• 3V?C48 ?

47 ;

' ,41

'0

loft

I36t

i 23;

I34?

^18-

f42*

)35

;22

P3d.

71r

III• 4

 0:

• 2 4]

25;

w7 5 :

66^

54

20 .

hd-

ii'7? 40

731

84 .

43^

l37f

16 ;

'i3^

• 32;: ' - ^ • . "• • % •

:44^

28:

;38

^33-

45::

194;

• 8 3 '

-67 ;

| 6 8 :

£2$

| |

; 69 ;

70:

78

H7-

7 6

H92

loil

^80:

i79:

Fig. 2  A random full-faceaggregation of square cellswith o ne face per cell kept

free, numbered in order ofgeneration.

Page 50: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 50/296

Fig. 3 The village of Seripe,after M umtaz.

36  The social logic of space

Once again, a well-defined global object has arisen from apurely JocaJ rule, in this case a rule requiring only that each cellshould be joined facewise onto at least one other. In this sensethe process is analogous to the cloud of midges: the global form

has not been conceived of or designed by any individual: it hasarisen from the independent dynamics of a process that isdistributed among a collection of individuals. But it is a strongercase than the midges, in that the global object is not simply arandom aggregation with only the fact of aggregation giving theglobal coherence of the object: in this case the global object has adefinite structure.

Some important principles may be drawn from this simple butinstruc tive ex amp le. First, in spite of appeara nces, space can workanalogously to a discrete system, in that the fact and the form of

the composite object are not a product of spatio-temporal causal-ity, but a rule followed by spatially discrete e ntities. In this sens e,contiguity is a logical fact, as well as a physical one. To beprecise, in that it is a physical fact it is also a logical one. Theglobal object is, as it were, welded into a whole by abstract as wellas material facts. Second, although the global structure of theobject has arisen through the agency of those who con structed theobject, the form the object has taken is not the product of thatagency, but of  spatial  laws which are quite independent of thatagency. Indeed, they appear more like natural laws than like theproducts of human agency.

Now this has the effect of making the customary demarcationswe draw between the natural and the artificial extremely tenuous.If we come across a real case of an object that appears to haveprec isely t his form - see Fig. 3 - it is far from obviou s that the

Metres

Page 51: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 51/296

The problem  of space  3 7

normal type of explanation of such forms in terms of humanpu po ses is com ple te . Of course the process by wh ich the form w asactually manufactured was purposeful , but the global form must

in som e sense a lso be the pro du ct of spatia l laws that prescr ibe thepossibility, even the necessity of such a form, given the initialcondit ions and an aggregative process. Third, and perhaps most

important, the global object that has resulted from the ' locallyruled' process has a descr ibable structure . We know this must bethe case, because we have described it to the reader, and the

reader has, we hope, recognised i t . As a result , we could eachmake another such form without gr»

iV|c* thro ugh the aggregative

process. We have retrieved a description of the global object

resulting from a spatial process, and we can reproduce it at will.The importance of such descr ipt ions is shown in the third

example, which wil l once again add new dimensions to thesys tem.

If the first example referred to an arrangement of individuals

and the second to an arrangement of space, the third br ings bothtogether : the children's game of hide-and-seek. Imagine that agroup of children come across a disused factory and, after a period

of ini t ia l explorat ion, begin to play hide-and-seek. Like manychildren's games, hide-and-seek is very spatia l . In fact i t dependson a fairly complex global description being available in thespatia l mil ieu in which the game is played. There must be a focal

home base linked to a sufficiently rich set of invisible hidingplaces, though not too many, or confusion wil l result . Connectingthe hiding places to the home base there must be a sufficiently rich

variety of paths, but again not too many. These paths must alsohave among themselves a suff ic ient number of interconnections,but again not too many. There must be enough children to make

the game interest ing, but again not too many. The required globaldescription is partly topological, in that it deals with very generalspatia l re la t ions in a network of points and l ines, and par t ly

numerical , in that while precise numbers are not given, there hasto be sufficient, but not too much of everything, if the game is to be

playable . We can call this global descr ipt ion, complete with i tstopological and numerical parameters, the model of the game of

hide-and-seek.

Now clearly a very large class of possible environments will

more or less satisfy the model, but equally clearly another largeclass would fail to satisfy them. One might be too poor in somerespect; ano ther too r ich. Too mu ch structure , as well as too l i t t le ,

it would seem, can make the game difficult to play. The factory,with its finite size, its disused machines and occasional stores andoffices might create just the right mix to make the game playable,

without repeti t ion, for a reasonably long t ime.

A number of fur ther pr inciples can be der ived from thisexample. It is clear that the factory, in some perfectly objective

Page 52: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 52/296

38 The social logic o f space

sense, satisfies the topological and numerical requirements of thehide-and-seek model. The abstract model of the game is actuallyembodied in the physical circumstances of the factory. Butequally, for the game to be playable at all, the abstract model of the

game must be carried around by each participant child in its head.It would not be sufficient if each child had in their head simply amental picture of places where he or she had previously playedthe game. In all likelihood the factory would not resemble any ofthem. In fact, the model in the child's head could not in any sensebe tied to the previous places where he or she had played thegame, since if this were the basis on which the model ofhide-and-seek were held, it would lead the child to seek similar-looking places to play the game next time. Only one form ofmental model is consistent with the way in which children

discover the game in totally unfamiliar environments: an abstractmodel of the basic topological and statistical invariants of thegame; that is a purely relational model, of some complexity, andwith probabilities attached to relations.

Thus the abstract model of the game is in some sense presentobjectively in the spatial organisation of the factory; but it isequally objectively present in each child's mental apparatus. Inthese c ircum stance s it is clearly a serious reduc tion to talk about achild's subjective response to the factory environment. Thechild's mental model is as objective as the reality. Given that thechi ld is the active part of the sys tem, it seem s at least as accurate -

though still incomplete - to talk of how the environment respondsto the child's imposition of its mental model of hide-and-seekupon it, as to talk about how the child responds to the environ-ment. But neither is an adequate formulation. The embodiment ofthe model appears to involve both mental processes and physicalreality. It does not unambiguously belong in either domain. Thedistinction between subjective minds and the objective spatio-temporal world does not seem to hold. Reality has logicalproperties, the mind, physical models, or at least models ofrelations holding in the physical world.

But in spite of the difficulty in assigning it a unique location,there is nevertheless a definite structure to the game. Thisstructure will be modified to a greater or lesser extent in differentphysical circumstances, but always within limits which canthemselves be specified. There is, in effect, a genotype to the gameof hide-and-seek, one whose presence can always be described asthe underlying organising principle of the  phenotypes  of thegame, that is, the actual realisation of the game in differentphysical milieux.

A fourth example can add a further dimension. An armymarches all day. At nightfall, a halt is called beside a river and

unpacking begins. Tents of various sizes and kinds are placed incertain definite relations; kitchens, sentry posts, flags, fences and

Page 53: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 53/296

The  problem of space  39

other paraphernalia are erected. A complete environment is, as itwere, unfolded. The next day the same procedure is followed, butthis time camp is made on a hilltop; the next day in a narrowgulley; and so on. Once again, as locations change, the phen otype sof the camp change, but the genotype, of course, remains thesame.

The army experiences this as a simple, repetitive proce dure, butthe situation is a good deal more complex. As in the case ofhide-and-seek, there is an abstract relational model governing thearrangement of the camp. But this time, it is not simply a tacit,unconsciously learned structure, but a clear set of instructionsinscribed somewhere in an army manual. Moreover, it carries agreat deal more information than the hide-and-seek model. Thehide-and-seek model has nothing more to it than its structure. The

army camp model carries information about such matters as socialstructures and relationships, patterns of organised activity, andeven ideological beliefs. If the hide-and-seek model means no-thing but  itself,  the army camp model means a highly structuredorganisation which will be re-duplicated in other armycamps.

But the m em bers of the arm y do not really carry this much morecomplex model about with them in their heads, using it creativelyin new situations and experimentally improvising new versions.On the contrary, the contribution of the indivdual brains ofsoliders is deliberately minimised. The abstract model is carriedand transmitted much more through the material and equipmentthat the group carries in order to construct its environment: its'instrumental set', so to speak.

6 T here is, it seems, som ething of a

reversal when we com pare hide-and-seek with the army camp. Inthe former, the model in the head predominates over the physicalstructure of the environment, which it uses actively and creative-ly. In the latter, the physical structure of the environment domin-ates the thought patterns of individuals, and to a considerableextent provides the organising model for behaviour. It is able todo this because the abstract model on which it is based contains

far more structure than the hide-and-seek model. Yet each in-volves a similar dialectic between mental model and spatio-temporal reality.

The army camp example raises a crucial question for theunderstanding of discrete systems and their spatial realisations:what is the nature of this extra information which appears to beprogrammed into the spatial structure. Is it simply nonspatialinformation? It clearly is social information, since it is predomi-nantly about statuses and their relations. But does this mean thatit is therefore sim ply extrane ous to the discrete system, or is theresome s ense in wh ich it is an intrinsic a nd even a necessary part ofthe discrete system? The answer can be made clear by consideringfor a moment another system where the issue of space makes a -

Page 54: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 54/296

40 The social logic o f space

perhaps somewhat unexpected - appearance: the foundations ofnatural language.

Space makes its appearance in natural language in the form ofthe distinction between particular and universal terms, that is, inthe difference between words which refer to a particular instanceof an object and those which refer to a class of such objects. Whena particula r is nam ed the act of naming implies that some entity isdistinguished in the spatio-temporal flux of potential experienceby being identified with a particular, more or less unified region ofspace. A particular can be, if not actually pointed to, then at leastindicated in some way. Its location and its organisation permit itto be indica ted as a particula r. It need not be spatially co ntinu ous .A cloud of midges, as well as a midge, can be indicated as aparticular. All that is required is that some set of - to borrow

Q uin e's term - 'oste nsio ns', that is observable items of some kind,should be integrated into a single object and summarised by aname, such that the name then refers not only to all the variousindividual ostentions, but also the single, spatially integratedobjects that they constitute globally.

7  The naming of a particular

follows from a procedure of identifying stable entities in the fluxby summing ostensions capable of what might be called   spatialintegration into unified objects.

A universal term is also formed by a procedure involvingsum m ation a nd identification, but in this case the entity identifiedis conspic uou sly not charac terised by existing in a single, more orless unified region of space. On the contrary, what is summarisedis a collection of entities without regard for their location orindicability. A universal names a class of entities which isnothing more than an imaginary assemblage formed in the brain.The objects integrated are not indicated, and in fact their exist-ence may even be purely hypothetical. Because the naming ofuniversals is as importantly independent of spatial integration asthe naming of particulars was dependent on it, for our purposes aterm is needed that reflects this distinction. Universal terms willtherefore be said to result from a procedure of transpatial  integra-

tion, that is, the summation of objects into composite entitieswithout regard for spatio-temporal indicability or location. Amidge, or a cloud of midges, is therefore an example of spatialintegration by which particulars are named, and midges anexample of transpatial integration, by which categories arenamed.

The introduction of categories into the discrete system and itsspatial realisation is not therefore simply the introduction ofnonspatial elements, but the introduction of specifically transpa-tial  elements. It means in effect the introduction of elementsand relations into the system whose reference points are not

simply within the system in question, but outside it in othercomparable systems  across space.  We may define a transpatial

Page 55: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 55/296

The problem of space  41

relation as one which is realised in one local discrete system inthe same form as it is realised in others. Now the existence of atranspatial relation has a very precise effect on the way in whichthis relation is realised in the local spatial system - that is, theparticular army camp. It renders certain elements and theirrelations noninterchangeabJe with others. In the hide-and-seekmodel, which it will be recalled 'meant' only its own structure, allspaces except the focal space, were interchangeable with eachother. The introduction of the transpatial dimension into thesystem means that particular spaces are required to be in specificrelations to other spaces. This is the formal correlate of what wemean intuitively when we say that one system has more structurethan another. It means that more necessary relations betweenelements have been introduced.

Once the transpatial has been defined in this way as forming aconceptual relation between local systems, then we can im-mediately see that it can also be found within the locally realiseddiscrete system  itself. It is to be found in the c onc ept of a rule. If arule is followed by a set of discrete in divid uals , it follows that therule exists as a transpatial entity as well as a spatial entity. Itfollows from the very nature of the system. The concept of thetranspatial does not therefore add a totally new dimension to thediscrete system. It simply extends its structure in a particulardirection.

The discrete system may therefore quite easily acquire a seriesof morphologically interesting properties to restrict its randombase:  essentially spatial rules, transpatial rules, and the retrievalof global desc riptio ns. Even w ith suc h a simplified system we canalready begin to analyse its potential dynamics. For example, ifwe have a collection of random individuals and provide themwith a spatial rule by which at least two spatially distinctaggregates are formed, and a transp atial rule by which at least twocategories of individuals are formed (As and Bs) with descriptionretrieval applicable to both, then we have created a system withtwo entirely different path wa ys of develop me nt. In case 1 all the

individuals of category A will be in one spatial group and all theBs in the other:

A A A B B B

A A A B B S

A A A B B B

in which case we have a correspondence between those relationsdefined spatially and those defined transpatially; in case 2 eachcategory is distributed between the two spatial groups:

A B B  B A AB A B  A B AA B A  B B A

Page 56: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 56/296

42 The social logic of space

in which case we have a noncorrespondence between the twotypes of relation.

Now let us suppose that description retrieval happens equallywith respect to both spatial and transpatial groupings, and that

these descriptions are then embodied in future behaviour. In thecorrespondence case, the long-term effect of description retrievalwill be to reinforce the local group at the expense of the globalsystem comprising both (or all) of the spatial groups. In thenoncorrespondence case, description retrieval will be split be-twe en reinforcing th e local spatial group and reinforcing relationsacross space with members of other spatial groups. The latter willtherefore tend to reinforce the global system as much as the localsystem, and the more noncorrespondence there is, the more it willdo so.

All human social formations appear to exhibit this duality ofspatial a nd transp atial, of local group and category. A mem ber of aunive rsity for exam ple is a mem ber of two fundame ntally diffe-rent kinds of group, the one spatial the other transpatial, by virtueof his position. On the one hand he is a member of a particularuniv ersity, w hic h is mo re or less spatially defined; on the other heis a member of an academic discipline, which is transpatiallydefined. Different aspects of his total behaviour will be concernedwith reinforcing the descriptions of both groups. The dialecticbetween the two types of grouping is one of the principalgenerators of local spatial patterning. Chapter 7 of this book isconcerned largely with exploring some of these dimensions ofdifference. At this stage we must concern ourselves with ananterio r ques tion: given these p roperties of a discrete system, thenhow can we define the discrete system in principle as a systemcapable of scientific investigation and analysis.

The inverted genotype

In describing the last two illustrative examples, hide-and-seekand the army camp, we found ourselves making use of the

biological distinction b etween pheno types and genotypes. This isinteresting not least because phenotype is a spatial concept andgenotype a transpatial concept. Does this mean that we can treatdiscrete systems as being in principle comparable to biologicalsystems? Th e answer is that in a very important sense w e cannot,but by clarifying th e reason w hy w e cannot we arrive at a suitablegeneral characterisation of the discrete system.

The biological concept of a genotype is essentially an informa-tional concept. It describes something like a total informationalenvironm ent w ithin w hich the phe notypes exist, in the sense thatindividua l ph enotype s are linked into a continuously transmitted

information structu re governing their form. Through the genotype,the phenotype has transtemporal links with his ancestors and

Page 57: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 57/296

The problem of space  43

desce nden ts as well as transpatial l inks with other contemporane-ous organisms of the same kind. The genotype is at least partiallyrealised in each individual organism through what might becalled a description centre. A description centre guarantees thecontinuity of the class of organisms in time and their similarity inspace. The description centre holds instructions locally on howsome initial material is to adapt local energy sources in order tounfold into a phenoty pe. The d escription centre does not have tobe a particula r organ; it may be spread throug hout th e organism. Itis a description centre because it contains a local embodiment ofgenetic instructions.

It is very tempting to import this powerful and simple conceptdirect into the analysis of discrete systems. After all, both humansocieties and their sp atial formations vary from each other, yet are

recognisably members of the same 'species' of entity, sharingmany features in common as well as having differences. Unfortu-nately th e idea collapses as soon as it is applied for a very obviousreason: there is no description centre. Of course, we may try toescape from this by arguing that the specialised institutionalstructure of a society is its description centre; but this leadsnowhere, since the more elementary a society is, the less likely itis to have specialised institu tions . Or we may instead try to extendthe concept of the biological genotype governing the socialbehaviour of individuals and argue that society is accounted for interms of genetically transmitted instructions for behaviour be-

tween species mem bers. This is equally unconvincing. How couldsuch a model account even in principle for the global morpholo-gical variation of social formations, or ind eed for their ex traordin-ary complexity? Either kind of reduction seems unrealistic. Amodel of a society must deal with society in its own terms, as anentity in its ow n right. It seems the con cept of genotype has led uson only to fail the critical test.

However, a simple adaptation of the concept of genotype canprovide what is needed: a model that characterises the structureand continuity as well as the variety and differences of discrete

system s with out recou rse to biologism, but saves the continuity ofsocial and biological mechanisms and allows for both evolutionand stability in social forms. The first adaptation is the substitu-tion  of a local  description retrieval mechanism  for  a descriptioncentre. The components of a discrete system do not carry withinthem, jointly or severally, a genetically transmissable descriptionof the system. Instead they have a mechanism which permits themto retrieve a description of the system from the system itself at anypoint in it.

8  This would make no difference to the stability of the

system under normal circumstances since, if the system werestable, the sam e description would always be retrieved. Thus the

system would behave as though it had the kind of stability thatcom es from the gen otype. But if such a system w ere to be changed

Page 58: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 58/296

44 The social logic of space

by an outside agency - say a natural disaster of some kind, or aconquest — then a new system could quickly stabilise that wouldhave no necessary similarity to the previous one. The system ishighly susceptible to external perturbation through the naturaloperation of the description retrieval mechanism.

The second adaptation is almost implied by the first. Thestructured  information on which  the system runs is not carried inthe description  mec hanism but in  reality itself in the  spatio-temporal world. The programme does not generate reality. Realitygenerates a programme, one whose description is retrievable,leading to the self-reproduction of the system under reasonablystable con dition s. Thu s in effect reality is its ow n program me. Th eabstract description is built into the material organisation ofreality, which as a result has some degree of intelligibility.

Description retrieval enables us to conceive of a discrete sys-tem, and even perhaps of a society as a special kind of 'artefact':one whose embodiment is its output. Whereas in a biologicalsystem th e ph eno type , insofar as it is an exam ple of the genotype,exists in the spatio-temporal informational environment, and ispreceded and followed by a series of comparable phenotypes whohave passed on the form from one to the next, a discrete systemruns on an inverted genotype, which exists as a transpatial orinformational structure within an environment of human spatio-temporal reality and activity.

9  What genetic instructions are to a

biological system, spatio-temporal reality and activity are to a

discrete system. Thus in this sense also the genotype-phenotypemechanism is inverted. The consistency in human activity at thesocial level is not the product of a biological genotype but of anartefactual genotype: one that is retrieved as a description fromreality itself w hich has already b een co nstructed by the activity ofman.

The inverted genotype of the discrete system is able to operatein many comparable ways to the biological genotype. For exampleit can permit that mixture of structural stability and evolutionarymorph ogenesis wh ich has been w idely noted as a property of both

biological and social system s. On the other hand, there are criticaldifferences. T he discre te system, w hile being generally stable, canundergo revolutionary rather than evolutionary changes andestablish radical discontinuities in its history. It is a systemwithout genetic memory. It tends to conserve the present and haveno regard for the past. Its inertia lies in the fact that its geneticstructure is transmitted through an enorm ous num ber and varietyof real spatio-temporal behaviours by its individual members,including those ordering space  itself.  On the other hand, it canalso be changed by deliberate and conscious action. Reflectiveaction could operate on the system's description of itself in much

the same way as an external perturbation or catastrophe. It couldprobably succeed in wiping out the past.

Page 59: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 59/296

The problem of space  45

An even more radical difference between the biological geno-type and the inverted genotype is that discrete systems, governedby inverted genotypes, can be a great deal untidier than biologicalsystem s. As has been seen, it is a property of a discrete system thatbecause of its random background it generates a good deal morethan is already contained in its genotype, both in the sense of theproduction of more global patterns of order and in the productionof disorder. An inverted genotype is much more precarious than abiological genotype. It must be constantly re-embodied in socialaction if it is not to vanish or mutate. In other words, theself-reproduction of a discrete system will require a good deal ofwork. But this social reproduction, it is clear, is the most fund-amental feature of human societies. Every society invests acertain proportion of its material resources not in the biological

perpetuation of individuals, but in the reproduction of the globalsociety by means of special biologically irrelevant behaviourswhich are aimed purely at the enactment of descriptions of thesociety as a whole. This is why, as Durkheim knew, the social isfound ed in the behav iours tha t we now call religious - that is, aset of biologically pointless, intensified behaviours whose valuelies purely in their description potential for the larger society.

10

The apparently absurd act of sacrifice, biologically unaccount-able,  but a universal feature of religious observances, is simply ashift of resources from the local to the global, from the spatial tothe transpatial, and from everyday life to the perpetuation of

descript ions.

Morphic languages

The whole notion of a discrete system as we have defined itdepends on the retrievabiJity of descriptions. This leads to astraightforward methodological requirement if we are to under-stand the working of such systems: we must learn to characterisediscrete sys tems in su ch a way as to clarify h ow their descrip tionsare retrievable in abstract form. We will in effect be trying to

describe an order that is already present in the system, in that theminds of individuals have already been able to grasp that such anorder exists and can be duplicated and built on. We must try tocharacterise what is to be known in terms of how it can be known.But it does not quite end there. As we have already seen,something like the laws of constructibility of patterns havealready played a role in producing global order out of local rules.Any characterisation of descriptions should also take into accountthis aspect. M ethodologically the re is a problem of morpho logy -what can be constructed so as to be knowable - and a problem ofknowability  —  how it is that descriptions can be known. Ultimate-

ly the crucial question will be how these two are related to eachother, and even how far they can be regarded as the same thing.

Page 60: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 60/296

46 The social logic of space

In view of the primacy accorded to abstract descriptions, itmight be expected that the methodology of research wouldtherefore be a mathematical one. However, this is not strictly thecase. Ma them atics m ay be too strong a language for ch aracterising

the structures on which discrete systems are run, although thesestructures will always include elements of both a topological andnum erica l na ture . In our view, a less delicate, more robust strategyis called for in trying to identify the essentials of these descrip-tions than any branch of mathematics currently provides.Moreoever, we believe there are strong grounds for adopting amethodology that is less than fully mathematical, in presentcircumstances at least. The reasons for this belief centre aroundthe problem of representing knowability in complex systemsgenerally, and perhaps we can best explain our case by reference

to various comments in another field where the problem ofknowability has been paramount: that of artificial intelligence.

The problem in artificial intelligence study seems to be some-thing like this. A computer program is essentially a procedure,and the skill in simulating intelligent behaviours - playing chess,recognising complex patterns, having an intelligent conversation- lies essentially in showing how the necessary mental operationscan be set out as a procedure. Success in reducing cognitiveprocesses to procedures has led to machines that can translate agood proportion of texts, play chess tolerably well, and analysepatterns with no small degree of success. But in the long run, this

success has been at the expense of rather unlifelike simulation,since human beings do not appear to act intelligently on the basisof extremely complex procedures, but on the basis of somethingmuch more difficult to analyse and represent: knowledge. AsMichie says: 'Machine intelligence is fast attaining self-definitionand we have as a touchstone the realisation that the centraloperations of intelligence are (logical and procedural) transac-tions on a knowledge base.'

11  And later, talking of chess playing

machines: 'As with other sectors of machine intelligence, richrewards await even partial solutions of the representation prob-

lem. To capture in a formal descriptive scheme the game'sdelicate structure; it is here that future progress lies, rather innano-second access times, parallel processing, or mega-megabitmemor ies /

1 2

What seems to be in doubt is whether or not the delicate formalstructure of these 'knowables' is actually made out of the appar-atus of m athem atics. On th is issue, the com men ts of several of thepioneers of artificial intelligence are illuminating. Von Neuman,in The  Computer  and the Brain, wrote shortly before he died:

Thus logic and m athematics in the central nervous system, when viewedas languages must structurally be essentially different from those lan-guages to which our common experience refers . . . when we talk ofmathematics, we may be discussing a secondary  language built on the

Page 61: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 61/296

The problem 0/ space 47

primary language truly used by the central nervous system. Thus theoutward forms of our mathematics are not absolutely relevant from thepoint of view of evaluating what the mathematical of logical languagetruly  used by the central nervous system is. However ... it cannot fail to

differ considerably from that which we consciously and explicitlyconsider as mathematics.

13

A s i m i l a r c o m m e n t i s m a d e b y Mc C u l l o c h :

Tautologies, which are the very stuff of mathematics and logic, are theideas of no neuron.

14

Likewise Kac and Ulam, d i scuss ing the log ic o f b iochemica l p ro -

cesses :

The exact m ech anics , logic, and com binatorics . . . are not yet fullyunderstood. New logical schemes that are established and analysed

mathematically doubtless will be found to involve patterns somewhatdifferent from those now used in the formal apparatus of mathematics. 15

A poss ib l e gu ide fo r our r ecen t purposes comes f rom the work

of Piaget on the development of intellective functions in children,including spatial concepts.

16  Piaget has an intriguing general

conclusion. Whereas the mathematical analysis of space beganwith geometry, then became generalised to protective geometry,and only rece ntly acq uired its most general form, that of topology,children appear to learn about the formal properties of space theother way round. The first spatial ideas that children learn bymanipulating the world and its objects are in the main what Piagetcalls topological, though without requiring this term to be used inits strictest mathematical sense. Piaget's observation appears inprinciple to be sound and interesting. Children first developconcepts of proximity, separation, spatial succession, enclosureand contiguity, and these concepts lie within the purview oftopology rather than geometry or projective geometry.

If it is the case that some of the deepest and most generalisedmathem atical concepts are close to intuition then we may hazarda guess as to how von Ne um an's challenge might be taken up withthe representation of knowables in view. It may be that certain

very abstract and general mathematical ideas are learnt from ourelementary transactions with the world. Might it not be the casethat, as von Neuman suggests, there may be two types of develop-ment from this basis? First, there is the secondary language ofmathematics proper, which we have to learn consciously; andsecond, a primary language, which sets up combinatorial systemsfounded on fundamental mathematical ideas, whose object is notto evolve rigorous, self-contained mathematical systems, but togive the formal structures by which we encode and structure ourknowledge of the world. In other words, the formal structure ofknowables in the man-made world may be constructed on thebasis of elementary concepts that are also found in mathematics,but are not themselves mathematical.

Page 62: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 62/296

48 The social logic of space

If this is the c ase (and it can o nly be pu t forward at this stage as along-term hypothesis), it would explain why little progress hasbeen made with the problem of the formal representation ofknowables. Mathematics as we have it is not the family of

structures that we need. They are too pure and they have anotherpurpose. The proper name for such formal, presumably com-binatorial systems ought to distinguish them clearly frommathematics proper. We therefore propose to call them   syntaxes.Syntaxes are combinatorial structures which, starting from ideasthat may be mathematical, unfold into families of pattern typesthat provide the artificial world of the discrete system with itsinternal order as knowables, and the brain with its means ofretrieving description of them. Syntax is the imperfect mathema-tics of the artificial.

Any set of artificial entities which uses syntax in this way canbe called a  morphic  langu age. A morp hic language is any set ofentities that are ordered into different arrangem ents by a syntax soas to cons titute social know ables. For example, space is a morphiclanguage. Each society constructs an 'ethnic domain' by arrangingspace according to certain principles.

17 By retrieving the abstract

description of these principles, we intuitively grasp an aspect ofthe social for that society. The description is retrievable becausethe arrangement is generated from syntactic principles. But socialrelationships also are a morphic language. For example, eachsociety will construct characteristic encounter patterns for its

members, varying from the most structured to the most random.The formal prin ciple s of these pa tterns will be the description s weretrieve, and in which we therefore recognise an aspect of thesocial for that society. Viewed this way, modes of production andco-ope ration can be seen as morph ic languages. In each society welearn the principles and create behaviours accordingly, even thosethat negate the accepted principles of order.

The concept of a morphic language links together the problemof knowability, defined as that of understanding how characteris-tic patterns in a set of phenomena can be recognised by reference

to abstract principles of arrangement, with that of morphology,defined as that of understanding the objective similarities anddifferences that classes of artificial ph eno m ena exhibit, by propos-ing that both are problems of understanding syntax. To explain aset of spatio-temporal events we first describe the combinatorialprinciples that gave rise to it. This reduction of a morphology tocombinatorial principles is its reduction to its principles ofknowability. The set of combinatorial principles is the syntax.Syntax is the most important property of a morphic language.What is knowable about the spatio-temporal output of a morphiclanguage is its syntax. Conve rsely, syntax permits spatio-temporal

arrangements to exhibit systematic similarities and differences.The nature of morphic languages can be clarified by comparing

Page 63: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 63/296

The problem of space 49

them to two other types of language: the natural and the mathema-tical. The primary purpose of a natural language (irrespective ofparticular linguistic functions) is to represent the world as itappears, that is, to convey a meaning that in no way resembles thelanguage  itself.  To accomplish the task of representation in aninfinitely rich universe, a natural language possesses two definingcharacteristics. First, it has a set of primary morphic units whichare strongly individuated, that is, each word is different from allother words and represents different things; and second, a formalor syntactic structure which is parsimonious and permissive, inthat it permits infinitely many sentences to be syntacticallywell-formed that are semantically nonsense (that is, effectivelynonsense from the point of view of linguistic form as a whole).Conversely, meaning can be transmitted (that is represented)

without well-formed syntactic structure. The defining characteris-tics of a natural language are a relatively short, possibly conven-tional syntax and a large lexicon.

By contrast, mathematical languages have very small lexicons(as small as possible) and very large syntaxes, in the sense of allthe structure that may be elaborated from the initial minimallexicon. Such languages are virtually useless for representing theworld as it appears because the primary morphic units are notindividuated at all , but rendered as homogeneous as possible -the members of a set, units of measurement, and so on. Mathema-tical symbols strip the m orph ic un it of all its particular prop erties,leaving only the most abstract and universal properties - being amember of a set, existing, and so on. To be interested in theparticular properties of particular numbers is for a mathematicianthe equivalent of a voyage in mysticism. Mathematical languagesdo not represent or mean anything except their own structure. Ifthey are useful for representing the most abstract forms of order inthe real world it is because, in its preoccupation with its ownstructure, mathematics arrives at general principles of structure,which, because they are deep and general, hold also at some levelin the real world.

Morphic languages differ from both, yet borrow certain prop-erties from each. From mathematical languages, morphic lan-guages take the small lexicon (that is, the homogeneity of itsprimary morphic units), the primacy of syntactic structure oversemantic representation, the property of being built up from aminimal initial system, and the property of not meaning anythingexce pt its o wn struc ture (that is to say, they do not exist torepresent other things, but to constitute patterns which are theirown meaning). From natural languages, morphic languages takethe property of being realised in the experiential world, of beingcreatively used for social purposes, and of permitting a rule-governed creativity.

Thus in a morphic language syntax has a far more important

Page 64: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 64/296

50 The social logic of space

role than in natural language. In natural language the existence ofa syntactically well-formed sentence permits a meaning to exist,but neither specifies it nor guarantees it. In a morphic languagethe existence of a syntactically well-formed sentence itselfguarantees and indeed specifies a meaning, because the meaningis only the abstract structu re of the pattern . Morph ic languages arethe realisation of abstract structure in the real world. They conveymeaning not in the sense of representing something else, but onlyin the sense of constituting a pattern. Thus if, as we believe, bothspace organisation and social encounter patterns are morphiclanguages, the construction of a social theory of space organisa-tion becomes a question of understanding the relations betweenthe principles of pattern generation in both.

This does not mean that architectural and urban forms are not

used to represent particular meanings, but it does argue that suchrepresentation is secondary. To achieve representation of mean-ing in the linguistic sense, the morphic language of space does soby behaving as a natural language. It individuates its morphicuni ts .  Hence buildings which are intended to convey particularmeanings do so by the addition of idiosyncratic elaboration anddetail: decoration , bell-towers, and so on. In so doing, the mo rphicunits come to behave more like particular words in naturallanguage. Conversely, when natural language is useful to conveyabstract structure as, for example in academic monographs, itdoes so by increasing the importance of syntax over the word.

18

Morphic languages are also like mathematics and unlike naturallanguage in that they pose the problem of the description, inaddition to that of the generation of structure. Current linguistictheory assumes that a theoretical description of a sentence wouldbe given by a formula expressing generative and transformationrules. This would hold even if current efforts to build semantical-ly (as opp osed to syntactically) based theories were successful. Inmathematics, however, structure is only reducible to generation ifone takes a strong philosophical line opposing reification orPlatonisation of structure and argues that all mathematical struc-

ture is self-evidently reducible to an ordering activity of mathe-ma ticians , not to be thoug ht of as existing in its own right. In fact,the dialectic of generation and description appears to be offundamental importance in the real-world behaviour of morphiclanguages. Any ordered collective activity that is not fully pre-programmed gives rise to the problem of retrieving a descriptionof the collective pattern. Meaning can be seen as a stably retriev-able description.

We now have a definition in principle of what the discretesystem and its spatial realisation is like, and how, again inprinciple, it acquires and perpetuates its order. We might call adiscrete system, together with its reproducible order, an arrange-ment. An arrangement can be defined as some set of initial

Page 65: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 65/296

The problem of space  51

randomly distributed discrete entities, which enter into differentkinds of relations in space-time and, by retrieving descriptions ofthe ordering principles of these relations, are able to reproducethem. An arrangement is essentially the extension of spatialintegration into the realm of transpatial integration: that is, itcreates the appearance - and in a more limited sense, the reality -of spatially integrated complexes which, properly speaking, retaintheir discrete identity as individual objects. A class, or transpatialintegration of objects is an unarranged set. Arrangement of thesesets gives each object a new reJationaJ identity; and out of theaccumulation of these relational identities in space-time globalpatterns can arise which, by description retrieval, can also be-come built into the system.

The basic forms of order in arrangements are these relational

systems considered abstractly, that is, considered as syntaxes ofmorphic languages. The next stage of our argument must, there-fore,  be the presentation of a syntax for the morphic language ofhuman spatial organisation, such that the syntax is both a theoryof the con structib ility of spatial order and a theory of how abstractdes criptio ns may be retrieved from it: that is, a theory of m orpho l-ogy, and at the same time a theory of abstract knowability.

Page 66: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 66/296

The logic of space

S U M M A R Y

This chapter does three things. First, it introduces a new concept of order

in space, as restrictions on an otherwise random process. It does this byshowing experimentally that certain kinds of spatial order in settlementscan be captured by manual or computer simulation. Second, it extendsthe argument to show that more complex restrictions on the randomprocess can give rise to more complex and quite different forms of order,permitting an analytic approach to space through the concept of afundamental set of elementary generators. Third, some conclusions aredrawn from this approach to order from the point of view of scientificstrategy. However, the chapter ends by showing the severe limitations ofthis approach, other than in establishing the fundamental dimensions ofanalysis. The reader is warned that this chapter is the most tortuous andperhaps the least rewarding in the book. Those who do not manage to

work their way through it can, however, easily proceed to the nextchapter, provided they have grasped the basic syntactic notions ofsymmetry-asymmetry and distributed-nondistributed.

Introduction

Even allowing for its purely descriptive and non-mathematicalintentions, a syntax model must nevertheless aim to do certainthings:

- to find the irreduc ible objects and relations, or 'elemen tarystructures' of the system of interest - in this case, humanspatial organisation in all its variability;

- to represent these elementary structures in some kind ofnotation or ideography, in order to escape from the dif-ficulty of always having to use cumbersome verbal con-structs for sets of ideas which are used repeatedly;

- to show how elementary structures are related to eachother to make a coherent system; and

- to show how they may be combined together to form morecomplex structures.

In view of the acknowledged scale and complexity of humanspatial organisation this is a tall order. Even so, there is anadditional difficulty which cannot be avoided. Leaving aside the

52

Page 67: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 67/296

The logic of space  53

question of meaning (and the different ways in which differentsocieties assign meanings to similar spatial configurations), thereis also the fundamental dimension of difference noted in the

Introduction: some societies seem to invest much less in spatialorder than others, being content with random, or near-randomarrangements, while others require complex, even geometricforms.

1  Clearly it would not be possible to build a social account

of spatial organisation in general if our initial descriptive modelwas unable to characterise an important class of cases.

What follows must therefore be seen as having philosophicaland methodological aims, rather than mathematical. The philo-soph ical aim is to show th at it is possible in princip le to constructa syntax model which, while describing fundamental variationsin structure, also incorporates the passage from non-order to

order. This will turn out to be of major importance in the laterstages of this book, where attention is turned to a more far-reaching consideration of the kinds of order that are possible inspatial and social arrangements, including those where meaningis introduced. The methodological aim is to discover theelementary relational concepts of space that are required for thedev elop me nt of the m etho ds of spatial analysis set out in Chapters3,  4 and 5.

These aims are more modest than they may appear at first sight,for a simple reason. At the most elementary levels there are

relatively few ways in which space  ca n  be adapted for humanpurposes, and at more complex levels, severe constraints on howthey m ay unfold and rem ain useful. For examp le, at some level allsettlement structure must retain a continuous system of per-meability outside its constituent buildings, while what we meanby a building implies a continuous boundary (however perme-able) as well as continuous internal permeability. These limita-tions and constraints make the effective morphology of spacemuch less complex than it would appear to a mathematicianattempting an enumeration of possibilities without taking theselimitations into account.

Compressed descriptions

Every science has for its object a morphology: that is, some set ofobservable forms, which present such similarities and differencesto observation that there is reason to believe these to be in someway interconnected. A theory describes this interconnectednessby setting up a family of organising principles from which eachdifference can be der ived. A theory, in effect, show s a mo rphologyto be a  system of transformations.

The principle that theories should be as economical as possiblefollows. A good theory is one which with few principles accountsfor much variability in the morphology; a bad theory one which

Page 68: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 68/296

54 The social logic of space

with many principles accounts for little. The least economicaldesc ription of a morp hology wo uld be a list of principle s and a listof phenomena, each as long as the other. A good theory is theopposite of a list. It is as compressed a description of themorphology as possible in terms of its organising principles.

Belief in the economy of theories is not therefore a matter foraesthetic preference. It reflects a deeper belief in the economy ofnature. If nature unfolded under the scope of arbitrarily manyprinciples, then sciences would not be possible. Lists of phe-nomena and lists of principles would be almost as long as eachother. These we would not recognise as scientific in any usefulsense. Belief in the well-ordering of nature impJies the compress-ibility of descriptions.

In decod ing artificial systems like spatial arrangemen ts or social

structures, a parallel belief in the economy of principles and theconsequent compressibility of descriptions is not unreasonable.Although it is often objected that the methods of natural sciencecannot apply to the man-made, since man creates as he chooses,the evidence suggests this is only partly true. Artificial phe-nomena, such as settlement forms (or languages for that matter),seem to manifest to observers about the same level of similaritiesand differences as nature. No two cases are alike, yet com parisonssuggest variations on underlying common principles. On reflec-tion, this is a very probable state of affairs. There must be somecompromise with complete indeterminacy in man-made systems.

This compromise comes from the recognition that even the mostarbitrary creation of man cannot be independent of objectivemorphological laws which are not of his own making. Manman ipulates morphological laws to his own end s, but he does notcreate those laws. It is this necessary compromise that admits theartificial to the realm of science, and makes it accessible to themethod of compressed descriptions.

The subject of Chapter 2 is the compressed description of thephysical patterns of space arranged for human purposes. It is adescription of space not in terms of these purposes (as is more

customary in architecture), but in terms of the underlying mor-phological constraints of pattern formation within which humanpurposes must work themselves out. It is based on two premises:first, that human spatial organisation, whether in the form ofsettlements or buildings, is the establishment of patterns ofrelationships composed essentially of boundaries and permeabili-ties of various k inds ; and second , that although there are infinitelymany different complexes of spatial relations possible in the realworld, there are not infinitely many underlying sets of organisingprinciples for these patterns. There is on the contrary a finitefamily of generators of complexity in human space organisation,

and it is within the constraints imposed by this family ofgenerators that spatial complexity is manipulated and adapted

Page 69: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 69/296

The logic of space  55

for social purposes. It is conjectured that this basic family ofgenerators is small, and is expressible as a set of inter-relatedstruc tures . Th e objective of this section is to describe this basic setof generators as a syntactic system.

The rud ime nts of the methodology have already been presentedto the reader in Chapter 1 (see pp. 35-6); Given a random processof assigning objects of some kind - say, single cells - to a surface,then what kind of spatial patterns emerge when this randomprocess is subject to restrictions of various kinds? In the examplegiven in Fig. 2 the restrictions were two: that each cell should bejoined facewise to at least one other; and at least one face on eachcell shou ld be free of a facewise join. This , as we saw, produc ed apattern of the same general type as a certain settlement form. Theobject is to find out what kinds of restriction on randomness will

generate the family of patterns that we actually find in humansettlement forms. In other words, we are trying to build a syntaxfor the morphic language, space, based on some system ofrestrictions on an underlying random process.

In what follows the notion of the random background process isof the utmost importance. It is the foundation the argument startsfrom, and it will return to play a significant role even in the mostcomplex, semantic stages of the theory. The assumption of arandom background process seems as liberating to the student ofpatter n in artificial phe no me na as the assum ption of inertia was tothe physicist. In certain ways it is conceptually comparable.Instead of trying to found the systematic analysis of hum an spatialpatterns in individual motivations - making individuals theunmotivated motivators of the system - it is assumed that humanbeings will deploy themselves in space in some way, perhapswithout interconnection from one individual to the next, in whichcase the process is random. The question then is how far indi-viduals have to relate their spatial actions to those of others inorder to give rise to pattern and form in space.

The first stage of the argument is formal but not strictlyma them atical. Th e aim is to represe nt certain basic rules of spatial

combination and relation in an ideographic language, such thatwhen these rules are coupled to a random background process,they become propositions expressing generative principles forspatial order. The advantage of this procedure is that it makes itpossible to be entirely rigorous about what we mean by pattern inspac e, so that que stions abo ut the social origins and consequ encesof these patterns can at least be formulated in an unambiguousway. Some examples can introduce the argument.

Some examples

In the region of the V aucluse in South ern France, west of the townof Apt and north of the Route N.100, the landscape has a striking

Page 70: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 70/296

56 The soc ial logic of space

(d)  LesGonbards 1968

Fig. 4 Six clump s ofbuilding from the Vaucluse

region of France.

Fig. 5 Hamlet of Les PetitsClements, 1968.

(a) Crevoulin 1961 {b )  Les Andeols 1968 (c)  Esquerade 1961

{e)  Castagne 1966 (f)   Les Bellots 196 8

feature; everywhere there are small, dense groups of buildings,collected together in such a way that from a distance they appearas disordered clumps, lacking in any kind of planning or design.

The clumps are as inconsistent in size as they are in layout. Aselection of the smallest clumps displays, it seems, total heter-ogeneity of plan (Fig. 4(a)-(f)). At first sight, even the largest,where we might expect to find more conscious attempts atplanning, appear no less varied (Fig 5). However, all is not quite asit seems. The smallest und oubted ly appear heterogeneous, but asthey approach a certain size a certain global regularity begins toappear. Perrotet, for example, is a hamlet of about forty buildingsin the Commune of Gargas. About half of the buildings arecurrently in ruins, although the decline has been arrested in

Page 71: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 71/296

The logic of space 57

Fig. 6 Ham let of Perrotet,1966.

recent years by the arrival of estivants  from the major towns, whorebuild and renovate the old dwellings as holiday villas. Thelayout of the ham let m ay show little sign of order or planning (Fig.6), but the impression the settlement makes on the casual observeris far from one of disorder (Fig. 7).

In plan the settlement appears irregular because it lacks theformal, geometric properties we normally associate with spatialorder. Yet as a place to walk about and experience, it seems topossess order of another, more subtle, more intricate kind. Thevery irregularity of the ways in which the buildings aggregateappears somehow to give the hamlet a certain recognisability andsuggests a certain underlying order.

This impression is reinforced when an attempt is made to

enumerate some of the spatial properties of the complex. Forexample:

- each individual building fronts directly onto the openspace structure of the hamlet without interveningboundaries;

- the o pen space structu re is not in the form, for example, ofa single central space with buildings grouped around it,but is rather like beads on a string: there are wider parts,and narrower parts, but all are linked together direct;

- the open space is eventually joined to itself to form onemajor ring and other sub-rings, the main beady ring ofspace being the strongest global characteristic of thecomplex;

Page 72: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 72/296

58 The social logic of space

Fig. 7 Ske tche s of Perrotet,

drawn from sl ides by Liz

Jones of New Hall ,

Cambridge.

- the beady ring is everyw here defined by an inner clum p ofbuildings, and a set of outer clumps, the beady ring beingdefined between the two;

- the outer set of clumps has the effect of defining a kind ofboundary to the settlement, giving it the appearance ofbeing a finite, even finished object;

- the beady ring structu re coupled to the imm ediate adjacen-cy of the building entrances gives the complex a highdegree of permeability and mutual accessibility of dwell-

ings:  there are by definition at least two ways from anybuilding to any other building.

The sense of underlying order is reinforced dramatically whenwe compare Perrotet first to a number of other settlements ofcomparable size in the vicinity (Fig. 8(a)-(d)), and then to aselection of the same settlements, including Perrotet, as they werenearly two hundred years ago (Fig. 9(a)-(d)).

In all cases the beady ring structure is invariant, although insome cases the locus of the principal beady ring has shifted overthe years, and in others the structure is somehow incomplete. Inspite of the great differences betwe en th e ham lets, and in sp ite oftheir changes over time, it seems reasonable to describe the beady

Page 73: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 73/296

The logic of space 59

(a) Les Yves 1961 ib)  Les Marchands 196 8  (c)  Les Redons 1968 (d)  Les Huguets 1961

Fig. 8 Four 'beady ring'hamlets from the V aucluseregion.

(a) Perrotet 1810 {b )  Les Redons 181 0 (c )  Les Yves 1810

ring structure, together with all the arrangemental properties that

define the beady ring, such as direct access to dwellings, as agenotype for hamlets in that region, with particular hamlets asindividual phenotypes.

The question is how could such a genotype arise in the firstplace and be reproduced so regularly. A paradigm problem is, ineffect, pres ented for the mo rphic language approach: wha t restric-tions on a random process of assigning objects to a surface wouldgive rise to the observable pattern that we see, in this case thebeady ring genotype? The answer turns out to be remarkablystraightforward. The following model, simplified to allow compu-ter simulation, shows the essentials of the generative process.

Let there be two kinds of objects, closed cells with an entrance(Fig. 10(a)), and open cells (Fig. 10(b)). Join the two together by a

(d)  Les Huguets 1810

Fig. 9 A selection of 'beady

ring' hamlets from the sameregion, as they were in theearly nineteen th century.

(b )

Fig. 10

Page 74: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 74/296

60 The social logic of space

Fig. 11 Four stages of a

computer-generated 'beady

ring' structure.

(a) (b)

(0 Id )

full facewise join on the entrance face to form a doublet (Fig.10(c)).  Allow these doublets to aggregate randomly, requiringonly that each new object added to the surface joins its open cellfull facewise onto at least one other open cell. The location of theclosed cell is randomised, one closed cell joining another fullfacewise, but not vertex to vertex. Fig. ll(a)-(d) illustrates atypical local process defined by these restrictions on randomness,with the closed cells numbered in order of their placing on thesurface.

The global beady ring effect results from the local rules in the

process in the same way as the global cloud effect followed fromthe spatio-temporal unfolding of the local rule followed by themidges. This process is robust, and can survive a great deal ofdistortion. For example, it will work almost regardless of theshape of the initial objects, provided the open-closed relation ismaintained. Interestingly, variation in the precise size and num-ber of the beady rings will follow from changing the probability ofclosed cells being joined to each other, or even allowing the opencells not to be joined provided the closed cells are. This meansthat not only will global forms arise from restrictions on thebackground random process, but also that variations on these

forms will follow from changing the value of probabilitiesassigned to these restrictions.

Page 75: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 75/296

The logic of space 61

(a)-24

(c)-42

Once this process  is und ersto od, the heteroge neous set of verysmall aggregations (Fig. 4(a)-(f)) suddenly makes sense as settle-ments in the process of growth towards beady ring status, with  afairly high closed-cell join probability -  that  is, as a  processgoverned by a mode l with topological and numerical properties,as suggested  by the hide-an d-seek case. But what  of  the largerexam ple? This ha s a small beady ring, and a very much larger one,so that the beady ring form still holds for the global structure of a

considerably larger settlement. Can this occur,  for example byextending the same generative process, or will  it be necessary tointroduce more structure into  the mac hine? The unfolding  issuggestive (Fig. 12(a)-(d)). In other w ords, the process can pro-duce the beady ring structure at more global levels. But of course,in  the  real case,  one suspects that  a  certain perception  byindividuals  of the em erging global structure w ould play its part,and that this would become more accentuated as the aggregationbecomes larger. Exactly how this can occur without violating theprinciples  of the model  is  taken  up in  Chapter  3, where thenumerical dimensions of the model are explored. At this stage, we

are concerned with basic spatial relations, and, in particular, withisolating their formal properties.

2

Fig. 12 An extended 'beadyring' process.

Page 76: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 76/296

62 The social logic of space

Fig. 13

Fig. 14 The proto-urban

agglomerat ion of Tikal,

after Hard oy, central area.

The generative process that forms the beady ring has a numberof formal properties of interest. First, the generative relation issymmetric,  in the sense that the restriction on rando mn essrequire d o nly that cell A and cell B become con tiguous neigh-bours of each other. The relation of neighbour always has theprop erty that the re lation of A to B is the sam e as the relation of Bto A. The process also has the distributed property, discussed inrelation to the examples in the Introduction, (pp. 11-12) in thatthe global structure is created purely by the arrangement of anumber of equal, individual cells rather than, for example, by thesuperimposition of a single superordinate cell on those cells.

The two contrary properties can also be defined. The propertyof asym me try wo uld exist when the relation of cell A to cell B wasnot the same as the relation of cell B to cell A, for example, if cell

A contained cell B. If a single cell A did contain a single cell B,then that relationship of containing could be said to be alsonondistributed, since the global structure is governed by a singlecell rather than a plurality of cells. A composite object of the form(Fig. 13) could therefore be said to be both asymmetric andnondistributed.

However, the property of asymmetry can also co-exist with theproperty of distributedness. Consider another example of anapp aren tly h ighly rand om ised arrangeme nt (Fig. 14). If we set out

D

/Tv • • • y • .

Page 77: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 77/296

The logic of space 63

a selection of local complexes in order of size (Fig. 15), we find anevolutionary process governed by a restriction on randomnesswhich associates not, as before, a single closed cell with a singleopen cell in a neighbou r re lation, but a plurality (i.e. at least two)of closed ce lls in a rela tion of con tainin g a single open cell - usingthe term containing in a rather broad way to include the casewhere one object is between two others. Every cell added to theoriginal aggregate complex is defined in relation to the sameinitial open cell. When all the available space is taken up, thesehigher order courtyard complexes form the primary cells of ahigher order complex of the same kind.

The inverse case can also occur, where a nondistributed com-plex (one whose global form is governed by a single cell) co-existswith symmetric cells, for example in the case where a single cell

contains a plurality of otherwise unarranged cells. An instance ofthis scheme occurs in Fig. 16.

We may co mp licate the arg um ent a little further by looking at areconstruction of what may be one of the world's earliest realexamples of a street system, defining this as a continuous systemof space at ground level accessible equally to all primary cells inthe system (following on from earlier continuous aggregates ofcells with roof entrances, with the roofs acting as the 'public'space) (Fig. 17). Th is is of course a beady rin g stru cture, but itlooks rather too regular to have been generated by the usualprocess. It seems that in some way the global form has been thegenerator. We therefore need to describe this global structure

I I

n

r.

C

~ i

r>

Fig. 15 A selection of smallaggregates from Tikalsnowing the 'many containsone' principle.

Fig. 16 Moun dangcompound in Camerounshowing the 'one containsman y' principle, afterBeguin.

Page 78: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 78/296

64 The social logic of space

Fig. 17 Reconstruction ofsixth level of Hacilar, 6th

millenium   B C , afterMellaart.

Hacilar 6

syntactically, since it can itself be the restriction on a randomprocess giving rise to yet more ordered complexes. The globalstructure is clearly distributed, but the open space is morecomplex. The notions of both symmetry and asymmetry arenecessa ry to describe it. Both the inner block and th e outer blockshave c ells in a sym metric relation to each other; but the relation ofthe outer blocks to the inner block is asymmetric. These prop-erties are combined with that of having the space structurebetween the outer and inner blocks, in spite of the fact that onecontains the other. In fact this structure combines all the distri-buted properties so far enumerated, and we can therefore think of

it as a symmetric-asymmetric distributed generator. Because ittypically generates rings of open space, we will see in due coursethat it is require d to characterise the structure of the various typesof street system (see pp. 71, 78-9).

Just as the distributed asymmetric generator was inverted tofind a nondistributed asymmetrical generator, so the street systemgenerator has a nondistributed inverse (Fig. 18). In this case, asingle outer cell contains a single inner cell, and these twosymmetrically define between them the space in which all thesmallest cells are placed. In effect, the outer and inner pluralaggregates of the previo us exam ple h ave been rep laced by a pair ofsingletons, and the single structure of space of the previous onehas been converted into a collection of symmetric cells.

Page 79: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 79/296

The logic of space 65

This family of generators and, more importantly, the model thatgoverns them, has several properties that are strongly reminiscentof certain basic syntactic distinctions in natural language. Forexample the distinction between singular and plural entities

seems very fundamental: once there are two, then there can be asmany as we please without changing the essential nature of thegenerator. But also the relation of asymmetry introduced a dimen-sion which brings to mind the subjects and objects of sentences.An asymmetric generator will be one in which the subjects - saythe conta ining cells - have objects - th e contained cells; and the recan be singular subjects and plural objects and vice versa.

In other words, some of the most pervasive configurationalproperties distinguishing one spatial arrangement from anotherseem to be based on a small number of underlying relational

ideas,  which have a strongly abstract form as well as a concretemanifestation. Some cases are more complex than others, butcomplex cases seem to be using compounds of the simplerrelations applied simultaneously. From the point of view of theobjects co-ordinated by these relations the system seems evensimpler: nothing has been invoked that is not one or other of thetwo primitive objects called upon to generate the beady ring: thatis ,  the closed ce ll, or the cell with its own bou ndary; and the ope ncell, or the cell without its boundary. All that happened is thatthese primitive objects have been brought into different relationsin different numbers.

This suggests an intriguing possibility: that not only can real-life spatial arrangements be understood as the products of genera-tive rules, acting as restrictions on an otherwise random process,but also that these rules might themselves be well ordered, in thesense of being themselves the product of an underlying corn-

Fig. 18 Zu lu Kraal

homestead, after Krige.

Page 80: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 80/296

66  The social logic of space

binatorial system governing the possibilities of forming ru les. It isthis possibility that justifies the next stage of the argument: theconstruction of an ideographic language for representing theconstruction of spatial arrangements - a syntax for the morphiclanguage of space. If it is possible to isolate and representsymbolically a small number of elementary concepts, such thatsequences of these symbols first encapsulate the relational con-cepts necessary to produce patterns by restricting a randomprocess, and second capture the structure of more complexcombinations, then rules for forming sequences of symbols willoffer a way of writing down a formal descriptive theory of spatialarrangements. This is what the ideographic language is: a descrip-tive theory of spatial organisation seen as a system of transforma-t ions.  It follows that it is also an attempt to represent spatial

arrangements as a  field of knowables,  that is , as a system ofpossibilities governed by a simple and abstract underlying systemof con cep ts. If hum an beings are able to learn these concep ts th enit is reasonable to expect that more complex cases are understoodthrough the recursive and combinatorial application of theseconcepts. It all depends on the rules for forming rules: theru le-ru les .

Elementary generators: an ideograph ic language

The concepts required to construct the ideographic language arein fact so elementary as to be found in the concept of an objectitself,  or more precisely in what might be called the elementaryrelations of the object.  By object we mean only that an entitysatisfies the minimal conditions for spatial integration (see p. 40),namely that it occupies, however temporarily, a  finite  and con-tinuous region of space. By elementary relations we mean onlythose relational properties that must hold for any object, regard-less of any ad ditiona l p roperties that it may have. Over and abovethe elementary relations of the object, one further notion isrequired: that of a randomly distributed set or class of such

objects. This is, of course, the concept of transpatial integration(see p . 40), or the set of objects with ou t an y unified location inspace-time. Thus it is intended to construct the ideographiclanguage only from the postulates of an object and a class ofobjects, objects being entities that have a specific location, classesof objects being entities that do not.

Let us define object to mean the simple open or closed planarcells used in the previous section - although the basic argumentswould work equally well for any reasonable three-dimensionalobject.

3  To say that an object has location means that it is to be

found in some finite and continuous region of space. Since theobject is finite, then it exists as some kind of discontinuity in alarger space. This larger space, which can be termed the 'carrier'

Page 81: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 81/296

The logic o f space 67

space, has a definite relation to the object: the larger space'contains' or surrounds the object. If the carrier space is repre-sented by Y, the relation of containing by o, and the property ofbeing a finite and c ontin uo us region of space by (   ) (allowing us tomak e some further desc ription of the object within the brackets ifwe wish), the left-right formula

Y o {   )

expresses the proposition that a carrier space contains an object.Given these conventions, a number of more complex types of

spatial discontinuity in a carrier space can immediately berepresented. For example, if we take two pairs of brackets andsuperimpose on them a pair of brackets that encompasses both:

Yo[{  )( ))

the formula expresses the proposition that two objects are com-bin ed togethe r so as to form, from the p oint of view of the carrier, asingle con tinuo us region of space . If the overall bracket is om itted:

Y o [   ) (  )

the formula expresses the proposition that a carrier contains twoindependent finite objects, which, from the point of view of thecarrier, are not continuous. The latter thus expresses spatialdisjunction, while the former expresses spatial conjunction.

This immediately leads to the formula for the random array ofobjects in a carrier:

(for as many objects as we please), meaning that each object islocated in  Y  independently, without reference to the location ofany other object. In other words, the least-ordered sequence ofsymbols corresponds in an intuitively obvious way to the least-ordered array of objects: the one in which each location isassigned without taking into account the location of any other. Ifwe then add numbers from left to right, that is, in the order in

which the formula is written:

Yo(  M )2(  )3. . . (  )k

we have a representation of a  process  of randomly assigningobjects to a carrier.

The combination of randomness with contiguity that charac-terised the beady ring process can also be captured in a verysimple way. If a third object is added to a pair which alreadyforms a contiguous composite:

Yo({(  )a( )2)( )3)

then the formula expresses the proposition that the third object isjoined to the composite, without specifying which of the sub-

Page 82: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 82/296

  8  The social logic of space

objects of the composite it is joined to. If the formula is consistent-

ly extended using the same bracketing principle:

V o ( (  M )2)

then the array will be one in which the location of each object is

random subject only to being attached to some part of the

composite. This formula precisely expresses the degree and type

of relational structure present in the beady ring type of process

(though nothing has yet been specified about the objects inside the

brackets).

The first of these processes, the random process, specifies no

relations among objects other than being assigned to the sameregion of space - a region which we might in fact identify as that

Y which is sufficient to carry all the assigned objects. So long as this

region is not unbounded - that is, in effect, so long as it is not

infinite nor the surface of a sphere - then the product of the

process will always appear as some kind of planar cluster,

however randomly dispersed, in much the same way as the cloud

of midges forms a definite though indeterminate three-dimension-

al cluster. In terms of its product, therefore, we might call the

process the cluster syntax, noting that while it is the least ordered

process in our system of interest, it nevertheless has a minimum

structure. The second process has more structure, but only

enough to guarantee that the product will be a dense and

continuous composite object. We might therefore call it the clump

syntax.  Neither process specifies any relations among objects

other than those necessary to  constitute  a composite object. The

first specifies no relations; the second only symmetric relations,

those of being a contiguous neighbour.

Suppose we then specify only asymmetric relations (meaning

that in the ideographic formula describing the process, the symbol

for containing, o, will be written between every pair of objects - or

more precisely between the composite object so far constituted bythe process and the new object added), we then have the formula:

Y o [ [   ) t o [  ) 2 )

, o 2   o 3   o 4   . . . y

This formula, of course, specifies initially the concentric pair of

objects, one inside the other, illustrated in Fig. 13, and then an

expansion of this by the addition of further cells, each in the same

relation of concentric containment. In terms of its product we

might then call this process the concentric syntax, noting that the

substitution of an asymmetric relation for a symmetric relation at

Page 83: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 83/296

The logic of space 69

every stage of the process has resulted in a composite object asdifferent as it is possible for it to be.

However, the differences in the product are not the only differ-ences. There is another formal difference between the two proces-

ses which is no less important. It is this. When the third object isadded to the growing composite object, not only is it added asbefore to the composite object already specified by the relations ofthe first two objects in the formula, but it also has specificrelations to each of those objects: it is immediately inside thesecond object, but it is not immediately inside the first object. Thefact that the first contains the second, means that if the secondcontains the third, then the second must intervene between thefirst and the third. In other words, specific relations are requiredamong all the objects of the composite: it is no longer enough to

say that the new object is added randomly to any part of thecomposite. All these relations have become nonirtterchangeabJe,where in the previous case they were all interchangeable. Thisimp ortan t pro perty is the by-prod uct of the transitive nature of therelation of containment  — that is, A contains B and  B contains Cimplies A contains C - compared to the intransitive nature of theneighbour relation - A being a neighbour of B and B of C does notimply that A is a neighbour of C.

A key difference between the clump and concentric processes isthat in the clump, relations are defined between the outsides ofobjects, whereas in the concentric process one object is nested

inside another. In fact, the matter is more complicated because, aswe shall see, in all but the simplest cases, most objects will beinside one and outside another. However, the concentric processde pe nd s on this relation of 'insideness* which is not present in thestructure of the clump process. Now the concept of inside has avery precise syntactic form, one reflected in the formula: it means'one contains'. The word implies that the containing entity issingle. This is interesting because language also offers us the con-cept of between, which implies something like a containing rela-tion, but referring specifically to two objects, and two objects

which act with their outsides to contain something else ratherthan with their insides. In this, natural language reflects a simplefact of nature: two objects cannot contain the same object with theirinsides unless there are also relations of containing between thosetwo,  as in the concentric process. The notion between in effectexpresses  distributed  con tainm ent, that is a form of containm entcarried out by more than one object, whereas the notion of insideexpresses nondistributed  containment.  The analogy between thetwo forms of containment - outside with more than one, insidewith one - can easily be shown by allowing the two in thebetween relation to become many. The effect can only be that the

objects group themselves around the object originally betweenthe first pair, until they very obviously contain it.

Page 84: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 84/296

70  The social logic of space

Outside containment thus allows us to define a new process,one whose 'germ' is the idea of betweenness and whose definingrule is that m any objects contain one. We might call it the centralspace syntax  and n ote that it has the properties being bothdistributed and asymmetric. This can be expressed in the ideogra-phy quite simply by adding further objects to the left of theo-symbol:

V o ( ( M ) 2 o( ))

( (  ) i ( )2 ( ) 3 o ( ) )

( (  ) i ( )2 ( ) 3 ( ) 4 o ( ) )

  M   ) 2   ) 3   ) 4 . . . ) k o ) )

implying that all cells to the left of the o-symbol that are not yetsubject to higher order brackets equally govern that symbol and

contain the object on the right side of the o-symbol. We mayclarify this and at the same time sho w throug h the ideography thatthe concept of many is an extension of the idea of 'twoness', byintroducing a diamond bracket around each pair, which impliesthat each object within the diamond brackets equally relates towhatever is on the right of the o-symbol:

  o { {  M   ) 2 ) o ) )  M ) 2 ) (  ) 3 ) o ) )

me aning tha t each time an object is added, it forms a pair with thepair, or pairs, already in the formula. Since this could lead to

rather long and unnecessarily complicated formulae we can alsointroduce a piece of notation for a concept that we introduced atthe beginning, that of a  se t  of objects, without specifying thenumber of objects in the set. Thus:

Y o { } o {  ))

can be taken to mean that a set of cells contains a single cell.However, neither of these two items of notation is strictly neces-sary to the stru ctu re of formulae. T hey are really a device to clarifythe concepts that are present in formulae and to permit

simplification.4

The structure of formulae for the remaining forms described inthe previous section can now be written without too muchdifficulty. The relation of a single cell containing a plurality ofcells can be written:

with the same rules for turning the right side pair into many asapplied to the left side pair in the central cell case, allowing:

Y o ) o {  } )

This - the asymmetric nondistributed generator - could becalled the estate syntax, since an outer boundary with internal

Page 85: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 85/296

The logic of space 71

blocks is the modern estate's most characteristic global form. Thecase where an outer plurality of cells - i.e. at least a pair -contained an inner plurality, and the two then contained a singlespace between them, can then be expressed:

or c lar i fying more of i t s s t ruc ture :

Yo({(( )(  ) ) o ( ( )( ) » o ( ) )

o r m o r e s i m p l y

Y o { } o { } o ))

implying that both the inner and outer set of cells act conjointly tocontain the space between them. This is then the symmetric-

asymmetric distributed generator and could be referred to as thering-street  syntax.  The non distrib uted version of the same kind ofrelation can then be written:

V o ( ( ) o ( ) o ( )( ))

or again clarifying its internal structure:

Y o ( ( ( ) o ( ) )o ( ( )( )))

or most simply:

Y o ) o [ ) o {  } )

implying that two cells, one inside the other, have between themmany cells. This could be called the  kraal syntax,  after one of itsmost familar products.

Now these simple formulae do two things. First, they showexactly what we mean by the degree of order that is introducedinto the random process in order to arrive at certain forms. Thedegree is given by the num ber of necessary co -ordinations that areintroduced among objects, and these are expressed in the numberof brackets and relation signs that are introduced into the formuladescribing the p rocess . In this sen se, it is perfectly clear that some

processes are more structured than others, precisely because theyrequire more necessary relations among objects to realise them.The corollary of this is that relations that are not necessary arecontingent. For example, if many cells contain a single cell, thenprovided that relation is satisfied, any other relations holdingamong the containing cells - some might be contiguous, othersnot - can be randomised. The formula only specifies what mustoccur, not what can occur as a by-product of the structure of theproce ss. This is very im portan t, since it preserves at every stage ofthe argument the link with the underlying random process, whichmay at any stage produce relations not written into the formula.

This has the very important consequences that we can in somecases describe the addition of further objects to a formula simply

Page 86: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 86/296

72 The social logic of space

by substituting the set brackets for more complex structures. Inother words, in these cases descriptions can be maintained moreor less at their initial level of compression. The formula simplysays add more objects, provided only that they satisfy the relation

described - that of making a composite object, or surrounding asingle cell, or being contain ed by a single cell. Such cases will bequite different from those where the addition of further cellsrequires the introduction of further structure. The extreme case isthe concentric syntax, where each added cell requires an addedcontaining relation.

Secondly, the formulae show that by permuting and combininga few elem enta ry rela tion s, a family of fund am entally differentforms can be generated from the random process; and theserelations are nothing more than the basic linguistic concepts of

singulars and plurals, subjects and objects, giving rise to distri-buted and nondistributed, symmetric and asymmetric relations.We have as it were kept track of the kinds of relational order weneed to introd uce into the system in order to give rise to differentfamilies of forms, considered as spatial structures, and we havedone so until the possibilities of combination of these elementaryrelations come up against the limitations of what is possible inreal space.

But we have not used all possible combinations of the terms a ndconcepts we have introduced, and the reason for this is that wehave not yet cons idered w hich type s of cell - open or closed -

belong in which locations in formulae - or indeed, whether thereare any limitations on where they may occur. Such limitationsexist, and they are strong limitations. They arise from veryfundamental properties of space that have to do with its practicalusability for human purposes. These limitations are one of theprincipal reasons why we are not concerned here with a purelymathematical enumeration of combinatorial structures, but withthe mapping and inter-relating of the real strategies that humanbeings have found useful in organising effective space. However,even though they are more in the nature of real world constraints

than purely mathematical limitations, they can still be formallystated, and stated within the formalism that we have established.

Closed an d op en cells are made u p of two kin ds of raw material:contin uous space, which w e have already introduced in its initialstate and called Y; and the stuff of which boundaries are made,wh ich has the prop erty of creating discontinuities in space. We donot have to know what kind of stuff this is in order to give it alabel. It can, if we like, have a purely no tional na ture - markingson the ground even. Provided it leads to discontinuities in space,then whatever it is and wherever it is we will call it X. Spaceorganised for human purposes is neither  Y  nor X. It is 'raw'  Y

converted into  effective space  by means of X. In order to beeffective it has to maintain the property of being continuous in

Page 87: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 87/296

The logic of space  73

spite of being transformed by the presenc e of X. The imperfectionof the logic of space results largely from this paradoxical need tomaintain continuity in a system of space in which it is actuallyconstructed by erecting discontinuities.

Now the notion of 'boundary' can be very easily defined. It issome X that has the prop erty of containing some part of Y:  (XoY).The Y  inside X is now transform ed in the sense that its relation tothe rest of Y has been changed by the intervention of X. It nowforms part of a small local system with a definite discontinuity inrespect to the large system. Let us agree to call this containedsegment of Y: y' (y-prime - the reason for the prime will be clearin a moment). Now  y' will no t be fully  discontinuous  with Ybecause, to make y' part of an effective system of space, theboun dary mu st have an entrance. Outside this entrance there will

be anothe r region of space also distingu ishable from Y, but thistime distinguishable not by virtue of being discontinuous with therest of Y, but by virtue of being continuous with   y'  - in the sensethat a region of space that is only adjacent to a part of theboundary without an entrance will not be so distinguishable. Wemay label this space y, and note that it is created by thecon vers ion of Y by X, even thou gh it does not itself have aboundary or indeed definite limits. However, we do not need toknow its limits in order to know that such a region as y exists. Weonly need to know the change in local conditions that leads to itsidentification (Fig. 19). Just as  y'  can be defined in terms of its

local syntactic conditions, so can y: y is an open cell contiguous  Ywith the global (X o y') and also con tiguous with y \ Thiscan be expressed by slightly complicating the bracketing system:

Y o ((X  o {y')y})

with the square brackets expressing the contiguous neighbour  Fig. 19relation of  y'  and y, but for simplicity we can write

Yo((Xoyf)y )

and assume that where they are adjacent, then the two ys will becontinuous.

A who le series of axiomatic statem ents about Y and its relationto X can now be made:  [YY)  = Y and  {Y o Y) = Y  (i.e. continuousspaces added contiguously to each other or put one inside theother w ill remain one co ntinu ous space), and in general Y is Yunle ss eithe r (X o y') or ((X o y')y);  that is Y, the carrier, rem ains Yuntil it is converted into effective space either by being containedby a boundary - the insideness rule - or by being adjacent to sucha space  — the outsideness rule. Then we can add [yy] = y, meaningthat effective outs ide sp aces joined to each other are a continuou s

space. Alternatively, the rule for the creation of y implies thatlarger systems of y can only exist by virtue of being everywhere

Page 88: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 88/296

74  The social logic of space

cons tructed by ((X o y')y).  The relations of y' w ith each other are alittle more com plex s ince, on the basis of what w e have so far said,they do not com e into direct contact with each other. However, byclarifying the way in which y' is structured by nondistributed

systems, we can then clarify some simple axioms for the wholesystem by which effective space is created by the intervention ofX.

Cons ider first the con centric syntax. Here, even in the m inim umform where two cells are nested one inside the other, we havetwo different conditions for y'. The space within the interior cellis simp ly y' by us ual d efinition; but the space inside the outer cellalso has the property of being between the outer and inner cell.However, we already know in principle how to represent thisproperty, and it can serve our purposes here:

Y o ( ( X l O ( X 2 o y 2 ' ) ) o y i ' )

meaning that X t  the outer boundary contains X2  the inner b ound-ary (which contains y2' on its own) and  y[  is between X and X2

(the diamond brackets can of course be eliminated). This princi-ple can then be extended to as many concentric cells as we like:

Y o (Xa  o (X2 o (X3 o y3') o y2') o  y{ )

and so on. However far we extend this process, the y'  spaces willalways appear side by side in the formula. However, because Xintervenes between each pair (other than at the entrance), it will

not in general be true to say that (y' o  y')  = y'. On the contrary,each  y'  maintains a discrete identity except at the entrance.However, since y'  is anterio r to y in the sen se that it is by virtue ofy'  that y is defined, then we can say that a space adjacent to anentrance ceases to be y and becomes  y'  as soon as it is containedby a superordinate boundary.

If we then take the estate syntax, in which in the minimal formone cell contains more than one, then

Y o ( ( X 1 o ( ( X 2 o y 2 ' ) ( X 3 o y 3 ' ) ) ) o y 1 ' )

expresses the fact (again diamond brackets can be omitted) thatboth x2  and x3  together, and the pair formed by those two and  xx

all define  yv  We can then allow the inner pair to becomecontiguous:

Y o ( ( X 1 o ( ( X 2 o y 2 ' ) ( X 3 o y 3/) ) ) o y ; )

or to define a distributed region of space between them:

Y o ((X, o (((X2  o y2')(X 3  o y3')) o y)) o  y{ )

and in such cases the formula will describe the relational struc-ture of the space as well as of the boun daries . Or we can eliminate

the space between the inner and outer boundaries completely,creating the form of the 'block' in which the outer boundary is, as

Page 89: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 89/296

The logic of space 75

it were, pressed tightly onto the inner cells at all points (althoughin practice there must always be some additional structure ofinternal space to allow access):

In the more complex case of the kraal form we can still see thatthe formula

Y o (((X t  o (X2  o y2')} o ((X3 o y3')(X4  o y4')}) o  y{)

specifies all the different relations of space as well as those ofboundaries - though once again the diamond brackets are reallyonly needed to clarify all the pair relations that between themdefine y'.

Finally, we can consider the case of the simplest nondistributed

structure, the closed cell  itself;  this is the form that results fromthe con versio n of X into a bou nda ry. This conv ersion, it turns out,can be described in terms of the basic concepts of the language.Consider for example a convex piece of X, one that contains nosegment of Y (Fig. 20). Now if we wish to deform this X so that itdoes in some sense contain some Y, we must introduce aconcav ity into it (Fig. 21). This concavity will always have a verydefinite form in the region where it does the containing. It willappear that the X somehow bifurcates in that region forming twoarms,  and it is these arms that do the containing. A boundary issimp ly an X that is bifurcated and the n co-ordinated w ith itself -

the two bifurcated arms are in some sense brought together againto form a complete ring. Since all the boundaries in which we areinterested will be permeable, we know that the 'co-ordinationwith itself will be by virtue of the fact that these two bifurcatedarms w ill have betw een them a piece of Y, and it is this Y  that willcomplete the circle. This in effect defines another type of 'con-verted' Y, one that we might call the 'threshold' and label it   y .This co-ordination of X with itself can then be expressed quitesimply by applying the pair brackets to the single object - this iswhat bifurcation means - and then using the between relation to

define the threshold (Fig. 22):Y o ((X) o y")

This most basic of all transformations uses, appropriately, all thebasic concepts in the language exactly once. This is the internalstructure of the object we know as X.

This rather complicated diversion has shown that, in all thetypes of case we have specified, it is possible to describe theconfiguration of insid e spac e that results from th e arrangement ofboun daries. We already know that outside space can be describedthrough the continuity rule - space joined to space in space. In

other words, the ideography can describe the structure of space,even though we complicate the local relational conditions that

Fig. 20

Fig. 21

Fig. 22

Page 90: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 90/296

76  The social logic of space

define that space as either y' or y. If we can now take this forgranted, we can immediately clarify the structure of formulae andembark on the rules for forming them by agreeing only to dealwith open and closed cells and their relations, calling the closedcell - with all its internal structure -   X  and the open cell y.

On ce this is do ne , one rule is sufficient to specify wh ere X and  yoccur in formulae. If we define a pJace in a formula as a positionwh ere cell-symbo ls occur witho ut interv ening o - implying that ifan o-relation d oes exist, there are two pla ces, one either side of o -then all we need say is: all formulae end w ith y except those w ithsingle X in the first place; all other cells are X. In other words,distributed formulae end with y but are otherwise X, whilenondistributed formulae are X all the way through.

Thus ,  leaving aside the random process and the cell co-ordin-

ated with  itself,  (( )( )) becomes (Xy), (( )( ) o ( )) becomes(XX o y) an d (( )( ) o ( )( ) o ( )) bec om es (XX o XX o y)  in thedis tribu ted cases; wh ile (( ) o ( )) becom es (X o X), (( ) o ( ) ( ))becomes (X o XX) and (( ) o ( ) ( )) becomes   (X o X o XX)in the non distrib uted cases. Intuitively we can think of distributed -ness as using y to gJue cells together - that is, to join each cell toothers by virtue of what they have betwe en them , and of no ndistri-butedness as using X to bind cells together - that is, to join eachcell to others by virtue of what is added around both. Thus beadyring forms based on clump generators, plaza-type forms basedon central cell generators, and street systems based on ring-streetgenerators all have in common that the closed cells are gluedtogether by a system of space with which they maintain directrelations as they grow; while concentric forms, estate forms andkraal forms are all bound together by some form of hierarchialsuperimposition of further boundaries which add discontinuitiesto the system.

The rule for X and y specifies what particular configurations ofspace described relationally in the formula will be like in reality.It is not so much an abstract axiom as an empirical postulate:these are the ways in which human beings have found it possible

to organise effective space such that it possesses relational prop-erties that enable it to satisfy different types of human purpose.Through it we can arrive at a compressed description of theunderlying principles of real types of pattern found in humanspatial organisation. But to achieve our original objective - toshow that these compressed descriptions themselves form asystem, and that the forms they describe can be understood as asystem of transform ations - we have to proceed in a slightly morecareful w ay. Having show n that the ideograph ic formulae can givedescriptions of spatial relations underlying forms so that thecomplexities of X and y can always be represented by complicat-

ing the formula, sh ow ing the p atterns them selves to be a system oftransformations then becomes a matter of showing that the

Page 91: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 91/296

The logic of space 77

formulae themselves are constructed according to rules. Theargument must proceed in three stages. First, we must show therules for constructing any formula. Second we must show howformulae form types by following rules of construction. Third, wemust show what additions may be made to formulae withoutchanging type, and by implication what will bring about atransformation from one type to another.

A formula is a left-right sequence of symbols with at least aninitial cell sym bol to th e right of Y o, or with a sequen ce of cellsymbols, with or without intervening o, in which each cell isbracke ted either () or () with at least one other already in theformula. A place (as we have already seen) is a position in aformula where cell symbols occur without intervening o. Anobject place  is a place which follows but does not precede o. All

other places are subject  places.Syntactic  none quivalen ce (and by implication equivalence) can

be defined by the following: a subject place followed by o is notequivalent to one not followed by o and subject places are notequivalent to object places; singular places are not equivalent toplura l place s; and closed cells are not equivalent to open cells (thelast really follows from the first rule, given the internal structureof the formula for a closed cell). Formulae are nonequivalent ifthey contain one or more nonequivalent cell or place.

The set of elementary nonequivalent formulae can then bedefined as those with at least one and no more than two subjectplaces; at least one and no more than two cell symbols per place(two being the least realisation of plurality); no repetition ofrelations and places; and no round brackets other than the pairthat surround every formula.

Elementary formulae are therefore the least realisations of thebasic family of linguistic differences between patterns: that is,different ways of arranging subjects and objects, singular andplurals, within the constraints of the system of open and closedcells.  The family of possible elementary formulae can be set outfirst in the form of a list, in which formulae are called Z and

numbered  Z1  8  (see list on p. 78) then in the form of a tablegoverned by the basic dimensions of the model: distributed-nondistributed, realising relations governed by plural and singu-lar subjects; and symmetric-asymmetric, realising the differencesbetween relations with and without o (Fig. 23).

Any formula which repeats the same objects in the samerelations can therefore be reasonably thought of as a member ofthe same family type - for the simple reason that a formulaestablishes a set of principles of organisation, and any morecomplex patterns based on the same principles can be thought ofas belonging to the same family ty pe. Recursive (that is repetitive)processes can therefore be thought of as applying a certain set oforderin g prin ciple s to an indefinite num ber of cells added one at a

Page 92: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 92/296

78 The social logic of space

D is tribu te d N ond is tribu ted

Ele me nta ry Typical recursive processes E le m entary Ty p ic a l recursive processes

Z ,

xa

closed cell

(xy)

clump 1 , 1 1 1 , 1 , 1 , » , I ,T 7 T 7 T 7I

(xox)

Q

1  1 11

(x x  o y)

D - D

central space

(xoxx)

6 a

O P

P q

q q

block or estate

(xx o x x  y)

Z 7

ring street

v

• • • • • •

(x o x o xx)

n

qPP

q

(-1

PPP

3

kraal

Fig. 23 Elementaryformulae and recursions.

List of  elemen tary formulae

Z,:yZ 2:XZ3:(Xy)Z4:{XoX)Z5:(XXoy)Z 6:(XoXX)Z 7 : (XXoXXoy)Z8:{X o X  o XX)

t ime.  Some  of  these processes have therefore already been de-scribed. The cluster,  or random process,  is a process  of  addingunco-ordinated cells to the elementary generator, the unco-ordin-ated cell . The clump process is the process of adding neighboursto the elementary generator, the open and closed neighbour pair.The c entral s pace pro cess is the process of adding cells to a centralspace defined betw een the initial pair of the elementary generator.Th e ring-street p rocess is that of add ing cells to the initial ring ofthe elementary generator.

All  of  these distribu ted processes  can also repeat  in  morecomplex ways. For example, by the same means as the cluster isgenerated  a series of clusters can be re-bracketed to give a cluster

Page 93: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 93/296

The logic of space 79

of clusters. The same would apply to a clump of clumps. In theclump process also, if we introduce more bracketing of closedcells with each other, then we will generate a form in which theislands that define the beady rings become increasingly irregularand increasingly penetrated with deep, wandering courtyards - asimple product of requiring more closed cells to join randomly toeach other. With the central cell process, if we introduce bracket-ing so that each initial closed cell becomes itself a continuousgroup ing of cells, w hile still requiring each to relate directly to thecentral space, then we may generate forms which have a centralspace between expanding lines of closed cells - long street rathertha n village green forms. Alternatively w e can replace each closedcell in the elementary generator with an elementary generator ofthe sam e type - still requiring all closed cells to relate directly to

whatever y-space is defined by their arrangement - and then wehave the seed of a 'crossroads' form, which can add objects downeach of its constituent loads'.

Again in the ring-street generator we can introduce more groupsof subject cells with o-relations, in which case we define aring-street system expanding concentrically; this may be extendedas far as we like, provided we introduce round brackets wherevernecessary to specify between which existing rings of cells a newring will be located. Alternatively we can add further groups ofcells by bracketing, but without new o-relations, in which case wespecify a ring-street process that expands symmetrically in the

sense of adding new rings which are intersecting neighbours ofrings already in the system. For example, if the second group ofclosed cells in the formu la be com es a pair of groups , the effect w illbe that the outer group with the pair of discrete inner groups willdefine a pair of intersecting rings, rather than a single ring.Evidently this may be extended for as many such symmetricrings as we like. Both the symmetric and asymmetric ways ofexpanding the ring-street generator offer useful insights into theessential struc ture of street systems. The essence of such a systemis the ring - not, for exam ple, the single linear space - and in any

reasona bly large system ea ch street will be the uniq ue intersectionof a pair of rings and each square or market-place the uniqueintersection of several rings. This seems exactly to capture theproperty of a street: that it is a unique and distinguishable entity,yet at the same time is only such by virtue of its membership of amuch larger system of spatial relations.

Repetition of relations in nondistributed forms will also varywith the relations to be repea ted. If the transformation that createsthe bou nda ry - the cell co-ordinated with itself - is repeated on thethe same object, the result will be a multicellular object with asmany cells as the number of times the transformation is repeated.We have already seen that the repetition of the concen tric relationwill make further concentric relations, although there is also the

Page 94: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 94/296

80   The social logic of space

case where the new cells and the o-relation are added to theelementary form without round brackets - that is, implicitly withdiam ond brackets - wh ich mean s that the third cell will bebetween the inner and outer boundaries. The estate or block

syntax can both repeat closed cells or it can repeat the boundariesthat co ntain them , in the first case giving a less hierarchical, in th esecond a more hierarchical form. Similarly with the kraal syntax.The simplest form of repetition is adding new object cells in thefinal place in the formula; but it is also possible to add morecomplex relations including, of course, the whole structure. Ineach of these cases, as in the distributed cases, the syntactic formof repetition depends on the structural relations that prevail forthe cells in the places where new cells are added.

At this stage, however, the limitations of this exercise are

already becoming clear. The more complex the situation to whichwe apply these simple generative notions, the more general therelational structures seem to be and the more tenuous theirdesc ription . At most we m ay say that is is usually possible to givean approximate and imperfect sketch of the global form of aspatial pattern by reference to the elementary generators and theirrecursions. The next section will adapt the elementary generatorsto a som ew hat different appr oach to the analysis of the com plexityof real cases.

The aim in this section has been more limited: to show thathowever complex spatial order becomes, it still seems to be

created out of certain elementary relational ideas, applied singlyor in combination, as restrictions on an underlying randomprocess. Essentially it says that if we add a cell to a growingcollection, then either the new cell is outside others, in whichcase it can be in no relation, in a contiguou s neighbo ur relation, ina relation of jointly defining space, or jointly defining a ring; or ifit is inside it is concentrically inside as a singleton, plurallywithin an outer boundary parallel to others, or is between an outerand an inner boundary. Practically speaking, these seem to be thepossibilities that exist. It is to be expected therefore that logic of

human spatial organisation will both explore and be constrictedby these possibilities.The aim of the ideography was to show that these structures

and their internal complexity could be represented rigorouslywithout going beyond the initial objects and relations: the openand closed cells and the basic syntactic relations of distributed-nondistributed and symmetric-asymmetric.

It is only these elementary concepts of object and relation thatare carried forward into the analytic methodologies that are to beset out in the next three chapters. The generative structures, to-gether with the ir ideograp hy, are, as it were, throw n away and will

not reappear. Their object was to show that certain fundamentalkinds of complexity in the elementary gestuary of space could be

Page 95: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 95/296

The logic of space  81

sho wn to be a system of transform ations built on these elementaryconcepts. But for analytic purposes these structures are alreadytoo complex to form a reliable basis for an objective, observation-

based procedure of analysis. For such an analysis we can onlydepend on observing the elementary objects and relations them-selves. The conjecture that these also unfold into a generativesyntax is of interest, but the next stages of the argument do notdepend on this being true. Spatial analysis is an independentstructure of ideas, although built on the same foundations as thegenerative syntax.

The argument of the book in effect bifurcates at this point. Thenext three chapters take the elementary spatial concepts of objectand relation and build them into a set of analytic techniques forspatial patterns, techniques-from which we hope it is possible to

infer the social content of patterns. The three following chaptersthen take the general model of restrictions on a random process asan epistemological scheme for considering the whole issue of thespatial dimension of social structures. Neither of the bifurcatingpath s therefore fully uses the gen erative model we have set out, butboth are found ed in it. Although generative syntax may in itself bea 'dead end', the spatial and epistemological notions that itestablishe s are the mean s by wh ich the next key - analytic - stagesof the argument can be attempted.

Page 96: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 96/296

The analysis of settlementlayouts

S U M M A R Y

The basic family of generative concepts is taken and made the basis of amethod of analysis of settlement forms, using the generative syntax toestablish the description of spatial order, and concepts dealing with thetype and quantity of space invested in those relations are introduced. Themo del of analysis sees a settlement as a bi-polar system arranged betw eenthe prim ary cells or buildings (houses, etc.) and the carrier (world outsid ethe settlement). The structure of space between these two domains is seenas a means of interfacing two kinds of relations: those among theinhabitants of the system; and those between inhabitants and strangers.The essence of the meth od of analysis is that it first establishes a way ofdealing with the global physical structure of a settlement without losingsight of its local structure; and second - a function of the first - itestablishes a method of describing space in such a way as to make itssocial origins and consequences a part of that description - although itmust be admitted the links are at present axiomatic rather than demons-trated.

Individuals and classes

At this point the reader could be forgiven for expecting theeventual product of the syntactic method to be some kind ofclassificatory index of idealised settlement forms, such that anyreal example could be typed and labelled by comparing it visuallywith the ideal types and selecting the one that gave the closest

approximation. This expectation may have been inadvertentlyreinforced by the form in which the syntactic argument has beenpresented: examples have been used to illustrate the relationbetw een syntactic formulae a nd s patial pattern in such a way as tomake this relation as obvious as possible. Unfortunately this willhave biased selection in the direction of small, simple andconsistent examples, and this may well have given the reader theimpression that in general settlement forms could be analysed bya simple procedure of visual comparison.

This is not the case, and nor was it ever to be expected. Thefunda men tal prop osition of the syntax theory is not that there is a

relation between settlement forms and social forces, but that thereis a relation betw een th e generators of settlement forms and social

82

Page 97: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 97/296

The analy sis of settlement layouts 83

forces. Only in the simplest cases can we expect these forces andgenerators to be few enough and uniform enough to permit instantrecognition. Most real cases will tend to be individuals, in thevery important sense that the differences between one exampleand another are likely to be as significant for analysis as thesimilarities, even when the examples are members of the samebroad equivalence class.

Take for example the three pairs of settlements, graded in orderof size, from nineteenth-century maps of the North of England(Fig. 24(a)-(f)). The two smallest, Muker and Middlesmoor, areboth variants on the beady ring form, but differ from the Frenchexamples in having several small clumps rather than a single largeclump, in having larger and less well-defined spaces, and in

Fig. 24 ((aH f)) Sixsettlements of various sizesin the North of England,with similarities anddifferences.

(a) Muker

Page 98: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 98/296

84 The social logic of space

Fig. 24  {cont.)

(b )  Middlesmoor

general appearing more loosely constructed than their Frenchcounterparts. The two middle-sized examples, Heptonstall andKirkoswald, both have beady ring components coupled to a stronglinear development away from the beady rings, all linear compo-nen ts taking the form of strings of beads but w ith strong variationsin the degree of beadiness. The largest pair, Grassington and

Hawes, again both have the beady ring property, but for the mostpart on a larger scale. Both also have a global property thatcharacterises a very high proportion of English towns: an overalllinear form even when there is substantial 'ringy' developmentlocally. In effect, syntax seems to confirm what intuition might inany case tell the visitor: that there is a certain family resemb lancewithin the group, but nonetheless each is strongly recognisable asa unique individual .

However, syntax can suggest one possibility that is not obviousto intuition: that the pathway from similarity to difference, fromequivalence class to individuality, is also the pathway from local

generators to global forms. It is not simply the existence of certaingenerators that gives the global configurational properties of each

Page 99: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 99/296

The analysis of settlement layouts 85

Fig. 24  (cont.)

(c )  Heptonstall

individual. It is the way in which variations in the application ofthe generators govern the growth of an expanding aggregation.What is required to move the syntax theory from the status ofabstract principles to that of operational techniques is not there-fore a recognition procedure, but a methodology of analysis that

captures and expresses not only common generators in thepath wa ys from local to global forms but also significant indiv idua ldifferences. Some way must be found to approach individualitywithout sacrificing generality.

Elsasser offers a useful starting point by defining individualityfrom the po int of view of the theoretical biologist. Any com binato-rial system, he argues - say black and w hite squares arranged on agrid - will generate a certain number of different possible con-figurations or individuals.

1  As the number of possible configura-

tions increases beyond the actual number of instances that areever likely to occur in the real world, the probability of each real

case being un ique increases. The m ore this is so then the more theproperty, and the theoretical problem of individuality exists.

Page 100: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 100/296

86 The social logic of space

Fig. 24 (cont.)

(d)  Kirkoswafd

Elsasser graphically illustrates the pervasiveness of the problemof individuality by comparing the number of possible configura-tions generated by a sim ple 10 x 10 grid, nam ely  10

200,  with the

number of seconds that have elapsed since the beginning of theuniverse, approximately 10

18.

Another name for the problem of individuality is of course theproblem of the 'combinatorial explosion' as encountered by mostattempts to model some set of 'similarly different* phenomena byusing combinatorial methods. Because any combinatorial system

tends to generate far too many different individuals, the chiefproblem tends to become that of defining equivalence classes ofthe individuals generated by the system. The syntax theory hadhoped to avoid this problem from the outset by defining equiva-lence classes as all patterns produced by the same restrictions onthe underlying random process. It was therefore a theory of whatto ignore, as well as what to attend to, in examining spatialpatterns in the real world. A fundamental question thereforeposes itself: does the re-admission of the notion of individu ality tothe syntax theory also re-admit the combinatorial explosion withall the restrictions this would impose on the possibility of making

general statements - even general descriptive statements - aboutspatial patterns.

Page 101: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 101/296

The analysis of settlement layouts 87

Fig. 24  (cont.)

(e) Grassington

The an sw er is that it does not, and the reason is that we have notyet taken numbers into account. The reader may recall that in theanalysis of the game of hide-and -seek used to discuss the notion ofa spatial structure it was shown that the abstract spatial model onwh ich the game dep ende d had both a topological and a num ericalcomponent, in that certain spatial relations had to exist insufficient numbers (but not too many) for the game to be playablein a particular place. The syntax theory as so far set out hasvirtually ignored the numerical dimension, distinguishing only

singular from plural and allowing all recursions to be repeated anarbitrary number of times. But numbers control the degree to

Page 102: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 102/296

88 The social logic of space

Fig. 24 (cont.)

if)   Hawes

which particular syntactic relations are realised in a complex, andclearly no real example will be properly described without someindication of the degree to which particular types of relation arepresent. The analytic method will in effect be principally con-cerned with quantifying the degree to which different generatorsunderlie a particular settlement form. It is through this that theproblem of individuality will be tractable. In general, it will be

argued, structures generate equivalence classes of forms, butnumbers generate individuals.

Page 103: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 103/296

The analysis of settlement  layouts  89

Numbers, however, can be introduced into syntax in twodifferent ways. First, we can talk about the numbers of syntacticrelations of this or that type that bear on a particular space orobject. Second, we can talk about the quantity of space (or size ofobjects) invested in those relations. The latter may becomenum erically more com plicated if we introduce questions of shape.Seen planarly as part of the layout, shape is likely to involvevariations in the extension of a space or object in one dimensionor the other; the area-perimeter ratio of the space, and so on.

But what is it that can be counted so as to reveal the differencesbetween one settlement structure and another? From this point ofview, the plan of the settlement is singularly uninformative. Mostsettlements seem to be made up of the same kinds of 'elements':'closed' elements like dwellings, shops, public buildings, and so

on, which by their aggregation define an 'open' system of more orless public space - streets, alleys, squares, and the like - whichknit the whole s ettlement together into a continuous system. Whatis it that gives a particular settlement its spatial individuality, aswell as its possible membership of a generic class of similarsettlements?

Everyday experience, as well as commonsense, tells us that itcan only lie in the relations between the two: buildings, by theway in which they are collected together, create a system of openspace - and it is the form and shape of the open space system aseverywhere defined by the buildings that constitute our experi-ence of the settlement. But if a syntactic and quantitative analysisis to focus on this relation by which the arrangement of closedelements defines the shape of the open element, then a substantialdifficulty is encountered. In an important sense (and unlike theclosed elements which are clearly identifiable, both as individualsand as blocks) the open space structure of a settlement is onecontinuous space. How is it then to be analysed without contra-dicting its essentially continuous nature?

Here we find a great difficulty. If we follow the planningpractice of representing the system as a topological network,

much of the idiosyncrasy of the system is lost. The equivalenceclass is much too large and we have failed to analyse either theindividuality or the generic nature of the system. If, on the otherhand, we follow the architectural method of calling some parts ofthe system 'spaces' and others 'paths'

2  - derived, probably, from

an und erly ing belief that all traditional settlem ents are made up of'streets and squares' - then we will be faced in most real caseswith unavoidable difficulties in deciding which is which -difficulties that are usually solved arbitrarily and subjectively,thus destroying any usefulness the analysis might have had.

3

Settlement analysis therefore raises a problem which is anteriorto analysis: that of the representation, preferably the objectiverepresentation, of the open space system of a settlement, both in

Page 104: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 104/296

90 The social logic of space

terms of  itself,  and in terms of its interface with the closedelements (buildings), and in such a way as to make syntacticrelation s identifiable and coun table. The section that follows is anattempt to solve this problem by building a basic model for therepresentation, analysis, and interpretation of settlements seen inthis way. It is followed by an outline of a step by step analyticproce dure, carried out on some illuminating examples. The w holemethodology, model and procedure, we call alpha-analysis, inorder to differentiate it from the analysis of building interiors(gamma-analysis) introduced in the next chapter.

4

A mo del for syntactic representation, an alysis, and

interpretation: alpha-analysis

The central problem of alpha-analysis (the syntactic analysis ofsettlemen ts) - wh ich is that of the contin uou s open space - can berepresented graphically. Fig. 25 is the ground plan of the smallFrench town of G, represented in the usual way. Fig. 26 is a kindof negative of the same system, with the open space hatched inand the buildings omitted. The problem of analysis is to describein a structured and quantitative way how Fig. 26 is constructed.

On the face of it, the negative diagram appears to be a set ofirregular intersecting rings forming a kind of  deformed  grid.However, a closer look, in the light of the previous chapter, cansuggest a little more. Seen locally, the space system seemseverywhere to be like a beady ring system, in that everywherespace widens to form irregular beads, and narrows to form strings,at the same time joining back to itself so that there are alwayschoices of routes from any space to any other space.

But the answer to the representation problem lies not inidentifying what is a bead and what is a string, but in looking atthe w hole system in terms of both p roper ties, or rather in terms of

Fig. 25 The sma ll town of G

in the Var region of France.

u ^

^ ^

Page 105: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 105/296

The analysis of settlement layouts 91

Fig. 26 The open spacestructu re of G.

each in turn. We can define 'stringiness' as being to do with theextension of space in one dimen sion, wh ereas 'bead iness' is to dowith the extension of space in two dimensions. Any point in the

structure of space - say the point marked y - can be seen to be apart of a linearly extended space, indicated by the dotted linespassing through the point, which represents the maximum globalor  axial  extension of that point in a straight line. But the pointmark ed y is also part of a fully convex  fat space,  indicated by theshaded area; that is, part of a space which represents the max-imum extension of the point in the second dimension, given thefirst dimension. Differences between one system of space andano ther can it will be show n be repre sented in the first instance asdifferences in the one- and two-dimensional extension of theirspace and in the relation between the two.

Both kinds of extension can be objectively represented. Anaxial map  (Fig. 28) of the open space structure of the settlement

Fig. 27 The point y seenconvexly and axially.

Fig. 28 Axial ma p of G.

Page 106: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 106/296

Fig. 29 Convex map of G.

92 The  social logic of space

will be the least set of such straight lines which passes througheach con vex space and makes all axial links (see below for detailsof procedure, section 1.03): and a convex m ap (Fig. 29) will be theleast set of fattest spaces that covers the system (see below fordetails of procedure, section  1.01).  From these maps it is easy tosee that urban space structures will differ from one anotheraccording to the degree of axial and convex extension of theirparts and according to the relation between these two forms ofextension. For example, convex spaces may become as long asaxial spaces if the system is very regular; or, as in G, many axiallines may pass through a series of convex spaces.

Since this space structure (which can be looked at axially,convexly, and in terms of the relation between axial and convexextension), is the result of the arrangement of buildings, andpossibly other bounded areas such as gardens, parks, and the like,it can also be described in terms of how the houses, shops, publicbuildings, and the like, are adjacent to and directly or indirectlypermeable to it. When buildings are directly accessible to an axialor convex space, we say that the space is constituted by thebuildings, but if the space is adjacent to buildings to which it isnot directly permeable, we say it is unconstituted. Thus the

systems of axial and convex space can be discussed in terms oftheir internal configurations, in relation to each other, in relationto the buildings which define the system, and in relation to theworld outside that system.

Two crucial concepts can now be introduced. The descriptionof a space will be the set of syntactic relations, both of buildingsand other spaces, that defines a particular space, while thesynchrony  of a spac e will be the qua ntity of space inve sted inthose relations. The use of the term synchrony to describe spacemay be seem initially curious, but it is used because it corres-ponds to a fundamental fact of experience, seen against the

background of the syntactic generation of settlement structures.The term structure is normally a synchronous notion: it describes

Page 107: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 107/296

The analysis of settlement layouts 93

9   f e 9 9(Upper Villas Builders) _24"""» r**^ Patwoe (The Howler Monkeys)

riE eRae  f j

(The Giant Armadillo*) U I

(Top of the V.llage)

(1st Fence of

Palm Fronds)

r T Tugar re E  Wa.pdro  \ • » Ecerie  E  Wa.p6ro  f A

16  I  (Entrance of the Tugare)  I  \ 1  (Entrance of the Cera)  \9

\

I  Women of the  N  « £ £ &  l  Women of the  I  Qr n I  Cera Mo.ety  | I  <

CentaJ

Housel  [ I[  Tugare -Mo.ety  | [

8J

\7 \  } I

  fc\

r AKJe  \

 \

(The Taprs) \ , i

\

(The Owners of

the Acur i Palm)

Ardrp .(The  Larvae)

  Ka Reu|Wa.p6ro  • ; • » t waiporo  /  J

x  Ba,p6ro  J Bordro  J ( E x ( t O f t h e  fat

'  Jaog^iwu t (Side Entrance) /  Unavenged Souls)  (, /

\  2" Ba .a |(2nd Fence  /  f}

\ofPamJFronds)  0 /W^a9i ,D69eV  (The Azure Jays)

(Lower Village Builders)

B<>e. Paru; or B^e U Po

^ t o m o f j t h e v , ^ C^A r o r p e ( T h e L a r v a e )

^ * " - /  ^ P a i w o e (The Howler Monkeys)

Ai|e R«a (Path of the Bull R oarer)

orAr^e E R<a (Path of the Actors)

Bakordro

Fig. 30  Diagram of a Bororo

village, after L6vi-Strauss.

a  set of relations that hold at a particular point in time. Thegenerative syntax model introduced  a  'diachro nic' notion ofstructure  in wh ich structure grew by a  stage-by-stage process.

The po int about investing space in  particular sets of relations isthat this will synchronise those relations. It will cause them to be

experienced  as a structure of simultaneou s relations.  The morespace  is  invested  in these relations,  the more this synch ronicitywill be emphasised. Thus  we can increase convex  synchrony  by

increasing  the quantity of two-dim ensional space invested in a

particular description,  and axial  synchrony by increasing thequantity of one-dim ensional space invested in a description. T hus

the Bororo village described by L evi-Strauss  (Fig. 30) is bothstrongly synchronised,  in that a large am ount of  convex  spaceis invested  in its central space, and also highly des criptive, in thata large numbe r of objects  in this case hou ses  are related to thatspace.

5

Once  the space system is  represented it can be analysed  as asystem of syntactic relations. This means analysing  the relationsin terms of the  basic prop erties of sym metry-asymmetry anddistributedness-nondistributedness.   To show  how this is donewe must first transcribe the system of axial or convex spaces as agraph; that is, as a representation  in wh ich sm all circles represen tthe spaces, and lines joining them represen t their r elations.  Forexample,  the axial map Fig. 31

Page 108: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 108/296

94 The social logic of space

Fig. 32

Fig. 33

can be represented

or the axial map

Fig. 34 b y

Following the customary abstract mathematical use of the word,the relation of two spaces a and b will be said to be symmetric ifthe relation of a to b is the same as the relation of b to a. Forexam ple, in Fig. 35 the relation of a and b is symm etrical - as arethe relations of both with c. In contrast, in Fig. 36 the relation of ato b wi th re spec t to c is not the sam e as the relation of b to a, sincefrom a one m ust p ass through b to reach c, but not vice versa. Thistype of relation will be said to be asymmetric, and we may notethat it always involves some notion of depth, since we must passthrough some third space to go from one space to another.

A relation between two spaces a and  b  will be said to be

distributed if there is more than one non-interesecting route froma to b, and nondistributed if there is only one. Note that thisproperty is quite indepe nden t from that of symm etry-asymmetry.For example, Fig. 37 combines nondistributedness with symmetryfrom the point of view of a; while Fig. 38 combines distri-butedness with asymmetry. In effect, in a nondistributed systemthere will never be more than one route from point to any other,whereas in a distributed system routes will always form rings.

These basic representational and relational concepts are enoughto permit the quantitative analysis of different spatial patterns. We

can, in effect, measure the degree to which any configuration ofurban space is, convexly or axially, distributed, nondistributed,symmetric or asymmetric in its whole and in its parts. Whilealpha-analysis is aimed at providing rigorous and 'objective'descriptions that permit the comparison of urban forms with oneanother, the object of analysis is not merely to offer anotherdescription, but to show how it can be that these differences aregenerated by, and embody in their very form and structure,different social purposes. It seems that these basic concepts areenou gh to allow u s to build a general interpretative framework forurban space structures. This framework is best presented as a

series of postulates as to the basic principles of urban space andits elementary 'social logic'.

Page 109: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 109/296

The analysis  of settlemen t layouts 95

The postulates are as follows:

(a) every settle m ent, or part of a settlem ent, that we mightselect for study is made up of at least:

a grouping of primary cells or buildings (houses, shops,and other suc h repeated elemen ts), wh ich we will call X;a surrounding space which is outside and not part of thesettlement, whether this is unbuilt countryside or simp-ly the surrounding parts of a town or city. Whatever thisis ,  it will be treated as a single entity, the carrier of thesystem of interest, and referred to as Y;possibly some secondary boundaries (gardens, estateboundaries, courtyard boundaries, and so on) superim-posed on some or all of the buildings, and intervening

between those buildings and the unbou nded space of thesettlement. These secondary boundaries will be knowncollectively as x;

a continuous system of open space defined by X or x,whose form and structure results only from the arrange-ment of those X or x. This open space structure will beknown as y. Any configuration of, say streets andsquares, would therefore be known simply as y;every settlement constructs an interface between theclosed and open parts of the system; whether this is anX-y interface or an x-y interface (an X-Y interface being

a fully dispe rsed set of buildings , and an x-Y interface, afully dispersed set of secondary boundaries);

(b) every settlement can therefore be seen as a sequencewith all, or most of X-x-y-Y.  This sequen ce can be seenas a 'bi-polar' system, with one pole (the most local)represented by X, and the other (the most global) by Y.The X -pole consists of m any e ntities, all the building s ofthe se ttlement, wh ereas th e Y-pole can be treated for ourpu rpo ses as a single undifferentiated entity, insofar as itrepr esen ts the v. orld ou tside the system of interest that

contains or carries the system. The interface thereforecomprises all the structure interposed between X and Y;

(c) the two poles of the system corres pond to a fundam entalsociological distinction between the two types of personwho may use the system: X is the domain of theinhabitants of the settlement, whereas  Y is the dom ain ofstrangers (those who may appear in the system fromoutside). The interface is therefore an interface for twotypes of relation: relations among the inhabitants of thesystem and relations between inhabitants and strangers.Every settlement form is influenced by both types of

relation; and every kind of syntactic analysis can, andnee ds to be, ma de from both p oints of view. It wou ld no t

Page 110: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 110/296

96 The social logic of space

be an exaggeration to say that the syntactic theory ofspatial analysis depends on comparing these two pointsof view;

(d) the y-space of the settlement, the structure of publicopen space, needs to be considered not only from thesetwo points of view, but also in the two ways mentionedearlier; that is, in terms of its axiality  and its  convexity,considered both separately and in relation to each other.Insofar as axiality refers to the maximum global exten-sion of the system of spaces unified linearly, whereasconvexity refers to the maximum local extension of thesystem of spaces unified two-d imen sionally, the sociolo-gical referents of axiality and convexity follow naturally.Axiality refers to the global organisation of the system

and therefore its organisation with respect to Y, or inother words to movement into and through the system;whereas convexity refers more to the local organisationof the system, and therefore to its organisation withrespect to X or, to put it another way, to its organisationfrom the point of view of those who are already staticallypresent in the system;

(e) every convex or axial space in the system will have acertain description; that is, a certain set of syntacticrelations to X, x, y and Y, which may be described andquantified in terms of its degree of symmetry-asymmet-ry, and distributedness-nondistributedness. Theseval ues in dica te the degree of unitary or diffused controlof that space; that is, the extent to which it participates ina system of ringy routes, and the degree of integration orsegregation  of that space with respect to the wholesystem, i.e. the extent to which a space renders the restof the settlement shallow and immediately accessible;

(f) each convex or axial space will have a certainsynchrony; that is, the investment of a certain quantityof axial or convex space in that description. An increase

in the quantity of space, making an axial line moreextended linearly or a convex space significantly fatter,will always increase the emphasis given to that descrip-tion. On the other hand, a large quantity of spaceinvested in a market-place with one kind of descriptionwill not be the same as a similar quantity of spaceinvested in a parade ground, since the latter will have adifferent form of syntactic description. In general, asmall quantity of space will be sufficient to constitute adescription, whereas a larger quantity of space willincreasingly represent that description; that is, it willlend it symbolic emphasis;

(g) the more descriptions are symmetric (always with re-

Page 111: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 111/296

The analysis of settlemen t layouts 97

spect to X and  Y)  then the more there will be a tendencyto the  integration of social categories  (such as thecategories of inhabitant and stranger), while converselythe more they are asymmetric then the more there willbe a tendency to the segregation  of social categories;while the more descriptions are distributed (again withrespect to X and Y), then the more there will be atendency towards the diffusion  of spatial control,  whilenondistributedness will indicate a tendency towards aunitary, superordinate control;

(h) finally, these desc ription s of space can be related both tothe everyday buildings that make up the system and tothe various kinds of public building that may be locatedwithin the urban fabric. For example, the global orga-

nisation of the system may be constituted throughout bythe everyday buildings, with public buildings eitherhid de n from the m ain axial system or related in the sameway as the everyday buildings; or, at the other extreme,the everyday buildings may be removed from the globalaxial system, leaving it constituted only by the mainpublic buildings.

A procedure for an alysis

Within this framework, the analytic procedure can be set out byworking through an example.6  In order to begin alpha-analysisaccurate maps are required - the best are about the scale   1:1250,

although the procedure has worked successfully on maps up tothe scale  1:10,000  - preferably with all entrances to buildingsmarked. Without precise knowledge of the location of entrances,some but not all of the key syntactic properties can be analysed.The example we will be working through is the small town of G,reproduced in Fig. 25. The support of a photographic record isalso helpful, but none of the following analytic proceduresdep en d on such a record. All can be carried o ut on the basis of the

map alone.

Maps with some numbers

The convex  m ap1.01 Mak e a conv ex m ap of the settlem ent (see Fig. 29), that

is , a map of the y-space broke n u p into the fattest possible convexspaces, so that all the y-space is incorporated into the fattestconvex space into which it could be incorporated. The formalmathematical definition of convexity is that no tangent drawn onthe perimeter passes through the space at any point. It might beeasier to think of convexity as existing when straight lines can bedrawn from any point in the space to any other point in the space

Page 112: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 112/296

98 The social logic of space

(b)

Fig. 39 (a) Convex space:no line drawn between any

two points in the space goes

outside the space.(b) Concave spac e: a linedrawn from A to B goes

outside the space.

without going outside the boundary of the space  itself.  Fig. 39shows an example of a convex space together with a space withconcavity introduced. In fact it is quite easy to make a convexmap. Sim ply find the largest convex space and draw it in, then th enext largest, and so on until all the space is accounted for. If visualdistinctions are difficult, then the convex spaces may be definedin two stages; first, by using a circle template to find where thelargest circles can be drawn in the y-space, and second, byexpanding each circle to be as large a space as possible withoutbreaking the convexity rule and without reducing the fatness ofany other space. Whichever way it is done, there is one issuewhich must be settled in advance: one must decide what level ofarticulation of the X or x will be ignored. One must, in effect,decide when changes in the shape of buildings or boundaries are

allowed to make a difference to the convex sp aces. In practice thisis not as difficult or indeterminate as it sounds and, provided thedecision is applied consistently across the sample of settlements,it need not be a problem. A further problem can be raised bylandscaping. Landscaping means the creation of distinctions inthe y-space over and above those resulting from X or x: it'fine-tunes' the environment. Since fine-tuning is itself a matter ofspatial interest, the best way to handle it is to make two convexmaps: a min ima l m ap, wh ich takes into account only X and x; anda maximal or fine-tuned map which takes account of all thefurther d istinctio ns in y. Small articulations in X and x can also be

handled in this way.

The  measures  of convexity1.02 Once the convex ma p is com plete, the degree to which

the y is broken up into convex spaces can be measured. Normallythe most co nven ient an d informative way of doing this is to dividethe number of buildings into the number of convex spaces. Thiswill tell us how much 'convex articulation' there is for thatnumber of buildings:

convex, .. num ber of convex spaces

articulation = r F T .I i.number ot buildings (1)

w hich for G will be 1 14/1 25, or 0.912. Obviously lower v alueswill indicate less breakup and therefore more synchrony, and viceversa. If, however, we were interested in the degree of convexdeformation of the grid then this can be measured by comparingthe number of convex spaces we have with the minimum thatcould exist for a regular grid with the same number of 'islands' -

defining an island as a block of continuously connected buildingscompletely surrounded by y-space. If I is the number of such

Page 113: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 113/296

The ana lysi s of settlement layouts 99

island s and C is the num ber of convex spaces, then the 'gridconvexity' of the system can be calculated by:

grid convexity = -—p——   (2)

This formula compares the convex map to an orthogonal grid inwhich convex spaces extend across the system in one direction,while in the other direction, the convex spaces fit ladder-fashioninto the interstices . The formula will give a value between 0 and 1,with high values indicating little deformation of the grid and lowvalues ind icating mu ch deformation of the grid. The value for G  is

= 0.305.

The axial map and  measures  ofaxiality1.03 Next make an axial map of the settlement by first

finding the longest straight line that can be drawn in the y anddrawing it on an overlaid tracing paper, then the second longest,and so on until all convex spaces are crossed and all axial linesthat can be linked to other axial lines without repetition are solinked (see Fig. 28). The degree of 'axial articulation' can then bemeasured. The most obvious way to do this is to compare thenumber of axial lines with the number of buildings:

. , .. , .. nu m be r of axial line s ,_.axial arti cu lati on = r >-, . ;, . (31

number of buildings

with low values indicating a higher degree of 'axiality' and highvalue s a greater break -up. T he figure for G is 41/ 12 5, or 0.328. It isalso informative in some cases to compare the number of axiallines to convex spaces in the same way, in which case low valueswill indicate a higher degree of axial integration of convex spacesand vice versa:

. , . . ..  r  number of axial l ines ,„ ,

axial integration of convex spaces =   c  ^ (4)number of convex spaces

The value for G is 41/114, or 0.360. The comparison to anorthogonal grid with the same number of islands can also bemeasured by:

grid a xia lity = 1 ^ 1 + ?  ( 5 )

wh ere I is the nu mb er of islands and L the num ber of axial lines.Once again, the result is a number between 0 and 1, but this timehigher values indicate a stronger approximation to a grid and lowvalues a greater degree of axial deformation. In this case, of

Page 114: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 114/296

100 The social logic of space

course, the equation is different since axial lines are allowed tointerpenetrate, whereas convex spaces do not. The value for G is(24 x 2) + 2/41 = 0.288. In general valu es of 0.25 an d above ind i-cate a 'griddy' system, while values of 0.15 and below denote amore axially deformed system. If there are any one-connectedspaces in the system, then grid axiality should be calculatedtwice: once to include the one-connected spaces and once toexclude them. By definition one-connected spaces do not affectthe number of islands.

The y-map1.04 Starting from th e conve x and axial m aps, some further

useful representations of syntactic properties can be made. Thefirst, the y-map involves the transformation of the convex map

into a graph, that is, into a diagram in which spaces are repre-sented by points (in fact we represent convex spaces by smallcircles) and relations between them (for example the relation ofcontiguity) by lines joining points - see Fig. 40(a). To make the

Fig. 40(a) The y-m ap of G.Each convex space is acircle, each p ermeable

adjacency a line.

y-map, simply place a circle inside each convex space - usingtracing paper of course - then join these circles by lines wh enever

the convex spaces share a face or part of a face (but not when theyonly share a vertex). A similar map can of course be made of theaxial system, but in general the structure of the graph will be toocomplex to yield much syntactic information visually.

Numerical properties of the  y-map1.05 Even at this stage, however, it is useful to represent

certain numerical properties visually, using copies of the y-mapas the base and simply writing in certain values on the appropri-ate points and lines, so that their distribution is clear. In thefollowing, therefore, it is probably easier to use a fresh copy of they-map each time:

(a) axiaJ Jink  indexes:  every line on the y-map represents a

Page 115: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 115/296

The analysis  of settlement layouts 10 1

relation between two convex spaces. There is therefore a link thatcan be draw n from one space to another . In all likelihood, this linkcan be axially extended to other spaces. The number of convexspaces that the exten ded axial line can reach is the axial link ind ex

of that link on the y-map, and can therefore be written in aboveeach link. This va lue w ill of cours e be 0 if the link joining the twospaces is not extendible to any further spaces. These values willindicate the degree to which one is aware, when present in onespace, of other distinct spaces. In G these values are relativelyhigh, since there are both many convex spaces and strong axialconnections between them (Fig. 40(b)).

Fig.40(b) The y-map of Gshowing axial link indexes.

The figure above each linkbetween circles representsthe number of additionalconvex spaces that aretraversed by the longestaxial line that passesthrough that link on theconvex map.

(b) axia l  space indexes:  this time we consider the convex spacesfrom an axial point of view. Each space in the system will beaxially linked to a certain number of other convex spaces, perhapsin several different direc tions. The total num ber of these spaces isthe axial space index of a space and can therefore be written onthe map adjacent to the space (Fig. 40(c)).

Fig. 40(c) The y-map of Gshowing axial spaceindex es. The figure above

each circle represents thetotal number of con vexspaces that are axiallylinked to that space in alldirections.

(c) building-space indexes: this time we simply record on eachconvex space the number of buildings that are both adjacent and

Page 116: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 116/296

102 The social logic of space

Fig. 40(d) The y-ma pofGshowing building-space

inde xes. The figure aboveeach circle represents the

number of buildings whichconstitute that space.

directly permeable to that space, i.e. the 'constitutedness' of thatspace . In G it shou ld be noted h ow few convex spaces have a zerovalue (Fig. 40(d)).

Fig. 40(e) Th ey-m apo fGsnowing depth from

building entrances. Thefigure above each circle

represents the number of

steps which that space isfrom the nearest b uilding

entrance.

(d) depth from building entrances: this time record on eachspace the number of steps it is away from the nearest buildingentra nce. In so me cases, such as G, these values w ill, of course, be1 (Fig. 40(e)\ In others, however, an interesting distribution may

appear. For example, in many recent housing developments thereis a tendency to have spaces distant from building entrances nearthe entrances to the system.

(e) the ringiness  of  the convex system: this is the number ofrings in the system as a proportion of the maximum possibleplanar rings for that number of spaces. This can be calculated by:

convex ringiness =I

2C-5(6)

where I is the number of islands (obviously the number of islandsand the n um ber of rings is the same) and C the numb er of convexspaces in the system. The value for G is 24 / 2 x 1 1 4 - 5 = 0.108,which is a high value for a convex map. In effect, ringiness

measures the distributedness of the y system with respect to itself(as opposed to X or Y).

Page 117: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 117/296

The analysis of settlement layouts 103

Numerical properties  of the axial map1.06 Certain useful nu mb ers may also be written on the axial

map - though this time using copies of the map  itself,  rather thana graph transformation of it:

(a)  axial line index:  write on each axial line the number ofconvex spaces it traverses (Fig. 40(f)).

(b)  axial connectivity:  write on the line the number of otherlines it interesects. (Fig. 40(g)).

(c) ring con nec tivity: write on th e line the num ber of rings in theaxial system it forms a part of, but only count as rings the axiallines round a single island i.e. rings that can be drawn around

more than one island are to be ignored (Fig. 40(h)).

Fig. 40(f) Axial map of Gshowing axial line indexes.The figure above each linerepresents the number ofconvex spaces which thatline traverses.

Fig. 40(g) Axial map of Gshowing axial conn ectivity.The figure above each linerepresents the number ofaxial line s that intersect

that line .

Fig.40(h ) Axial map of Gshowing ring connectivity.The figure above each linerepresents the number ofislands which share a face(but not a vertex) with thatline.

xi  ar«at r«pre*ent islands of unbu ilt space

Page 118: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 118/296

104 The social logic of space

Figure 40(i) Axial map of Gshowing depth values from

Y. The figure above eachline represents the numberof steps it is from th e edge

of the settlement.

(d) depth from Y values: w rite on each line the number of stepsit is from   Y in the axial map, (Fig. 40(i)). The simplest way to dothis is to write in first all the lines  1-deep,  then all those 2-deep

and so on. The carrier, Y, is given the value 0, and so must first beidentified. In the case of G, or indeed any finite settlement, simplyuse the roads leading to the settlement as the carrier. In an estateuse the surrounding street system.

(e) the ringiness of the axial map: this can be calculated by:

axial ringiness =2 L - 5

I(7 )

Fig. 41 Interface map of G.The dots are houses, the

circles convex sp aces, andthe lines relations of direct

permeability.

where L is the number of axial lines. This value will be higher

than that for the convex map, and may exceed 1, since the axialmap is non-planar, though in practice values greater than 1are unusual. The value for  G is 24/2 x 41 -  5 = 0.312.

The interface m ap1.07   A further key map is the convex interface map - Fig. 41.

To make this map, take the y-map and add to it a dot for eachbuilding or bounded space in the system; then draw a line linkingdots to circles wherever there is a relation of both adjacency anddirect permeability from the building or boundary to the convexspace. In the case of G the interface map will be, more or less, the

Page 119: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 119/296

The analysis of settlement layouts 105

Fig. 42 Converse interfacemap, where lines show onlyrelations of directadjacency combined withimpermeability.

permeability map of the settlement. But if there are a good manybuild ings a nd b oun dar ies relatively rem ote from y then it is useful

to make also a complete permeability map by proceeding from theinterface map but adding relations of adjacency and direct per-meability from buildings to secondary boundaries, and fromsecondary boundaries to each other.

The converse interface map1.08 The co nverse of the interface m ap may then be draw n

(Fig. 42) by starting from the y-map, drawing dots for all buildingsand boundaries, but then drawing a line from each building orboundary to the convex spaces only where there is a relation ofadjacency and impermeability. In this case, therefore, the lineslinking buildings and bo unda ries to convex spaces will representblank walls, whereas in the previous case they represented wallswith entrances in them. The relation between the interface mapand its converse will immediately show how constituted (i.e.directly adjacent and permeable) the convex spaces are withrespect to buildings.

The decomp osition map and its converse1.09 Th is prope rty m ay be explored m ore visually by mak-

ing a decomposition map. This is drawn by starting with only the

circles of the y-map (i.e. omitting the lines to begin with) anddrawing lines linking one circle to another only when both aredirectly adjacent and permeable to at least one building entrance(Fig. 43(a)). In the case of G, this leaves the bulk of the y-mapintact, including most of its rings. In other cases, however, thestructure of y-space will 'decompose' into separate fragments.Cases where the y-map stays more or less intact will be calledcontn uous ly con stituted since everywhere the convex spaces willbe directly adjacent to at least one door. In other cases, hooweverwhat is continuous is the system of unconstituted space; that is,space that is remote from building entrances. This may be shown

graphically by starting again with the y-map and then drawinglines from one circle to another only when both spaces are not

Page 120: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 120/296

106 The social logic of space

Fig. 43(a) Decom positionmap of G, showing lines

linking convex spaces onlywhen both are directly

adjacent and permeable to at

least one house. This show sthe extent to which the

convex spaces arecontinuously constituted

by front doors. In G, most ofthe structure of the system

survives thisdecomposition  - as will

most vernacular settlementforms.

Fig. 43(b) Conversedecomposition map of G.Lines are drawn betw een

circles only when bothspaces are unconstituted by

building entrances. o  o° o  o<

O   O  J?  r, °o o o  o  o  o

o o o o

-  -  O

  « \ f l O O ° °O ° ° °  0°° 0

O ° O O n ° ° OO

O ° O  O OO °  °O  O Oo  o o o o

O   O

adjacent an d pe rme able to some building . The converse map for Gis shown  in Fig. 43(b).

Justified maps1.10 Other maps of prope rties that cou ld be visually repre-

sented  at  this stage might inc lude  a  justified interface m ap orjustified permeability map. A justified map is one in which somepoin t, usu ally th e carrier, is put at the base, and then all poin ts ofdepth  1  from that poin t  are aligned ho rizontally imm ediatelyabove it, all points at depth 2 from that point above those at depth1, and so on until all levels of depth from that point are accou ntedfor.  All lines between points  are of  course retained  as in the

unjustified map, although this may entail stretching   the linesconsiderably  in order to make th e link  in the justified m ap. Fig.44((a)-(b)) is a justified axial map of  G from spaces 7  and 37 drawnby computer. Justified maps are worth making when there seemsto be some special depth distribution,  for example  of the build-ings. In ma ny rec ent estates  it will be found that often build ingsare clustered relatively deep from Y, and often deep with respectto each other, perhaps in nondistributed rather than in distributedparts  of  the m ap. Such properties may hold  for either axial orconvex ma ps, and either can be justified if required. It may also atthis stage  be  worth drawing  and  justifying  two maps which

separate out the distributed and nondistributed elements  of t heinterface  or perm eability m aps. The best strategy will depen d on

Page 121: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 121/296

The analysis of settlement layouts 107

Fig. 44(a) Justified axialmap of G seen from space 7in the numbered axial mapshow n in Fig. 45. Note boththe overall 'shallowness' of

the graph and the clusteringof spaces at depths 2 and 3from the 'root', as comparedto Fig. 44(b).(b)  Map of G seen fromspace 37, which is both'deeper' overall and hasmost spaces at depths 4 and5 from the 'root'.

what one thinks there is to be shown. Of course, all kinds ofjustified m aps can also be ma de from any po int in the system. Forexample, one may wish to compare what the system looks likefrom an internal point and the carrier, or from two differentinternal points. This can sometimes be revealing, but it will belaborious if carried too far and if attempted without the aid of acomputer. In the numerical section that follows, the idea of look-

ing at the system from all points in it is simplified by using com-puter-based numerical analysis rather than visual representation.

Page 122: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 122/296

108  The social logic of space

However, it will turn out that numerical analysis will make allkinds of visual representations possible that were not possiblebefore. On the whole these will have to do with global propertiesof the system that are not at all discernible with the 'naked eye'.

Numbers with some maps

Syntactic descriptions of spaces2.01 On the basis of visual representations it is possible to

see that each sp ace, wh ethe r axial or convex (or even a building orboundary) has certain syntactic properties: it will either bedistributed with respect to other spaces (have more than one wayto it) or nondistributed (only one way), and it will be eithersymmetric with respect to other spaces (having the same relationto them as they do to it) or asymmetric (not having the same

relation, in the sense of one controlling the way to another withrespect to a third). The syntactic properties of a space we havecalled its description. The aim of the numerical side of syntacticanalysis is to deepen descriptions by expressing in a concise wayvery com plex relation al p roperties of spaces and of the system as awhole. In particular, it is about considering individual spaces interms of the whole system.

The measure of  integration2.02 The notion of depth has already been introdu ced, in the

sense that axial or convex segm ents were either many steps - thatis ,  deep - from buildings or from the carrier, or a few steps that is,shallow - from the carrier or the buildings. Relations of depthnecessarily involve the notion of asymmetry, since spaces canonly be deep from other spaces if it is necessary to pass throughintervening spaces to arrive at them. The measure of relativeasymmetry  generalises this by com paring how deep the system isfrom a particular point with how deep or shallow it theoreticallycould be - the least depth existing when all spaces are directlyconnected to the original space, and the most when all spaces arearranged in a un ilinea r se quenc e away from the original space, i.e.

every additional space in the system adds one more level of depth.To calculate relative asymmetry from any point, work out themean depth of the system from the space by assigning a depthvalue to each sp ace accord ing to how m any spaces it is away fromthe original space, summing these values and dividing by thenum ber of spaces in th e system less one (the original space). Thencalculate relative asymmetry as follows:

relativ e asy mm etry = , —- (8)

where MD is the mean depth and k the number of spaces in thesystem. This will give a value between 0 and 1, with low values

Page 123: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 123/296

Page 124: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 124/296

Page 125: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 125/296

The analysis of settlement layouts  111

Table 2. List of  points with  control  values (Ej

E l e m e n t n u m b e r

17

19

3

1

36

35

34

13

16

24

32

4122

26

25

21

8

29

28

2

14

31

4

3912

2

38

4

5

27

17

9

3

15

6

1837

33

23

11

C o n t r o l v a l u e

2 3667

2 1167

1 7833

1 7

1 5

1 3333

1 2

1 2

1 2

1 1667

1 15

1 125

1 1

1 1

1 75

1 5

1 5

1 417

1

9583

  9417

  9 83

  875

875

8583

  7917

  7667

  75

75

75

7417

  7417

  7 83

  6667

  625

625

6167

  5

5

4167

  375

have on the level - though not the distribution - of RA values inreal systems. In effect, what we do is compare the RA value wehave with the RA value for the root (the space at the bottom of ajustified map) of a diamond-shaped pattern. This has nothing todo with geometric shape. It simply means a justified map in whichthere are k spaces at mean depth level, k/2 at one level above andbelow, k/4 at two levels above and below, and so on until there is

Page 126: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 126/296

112 The social logic of space

Table  3.  Table  of  D-values  for k  spaces,  i.e.  RA  values  for

diamond-shaped complexes  (see text)  of k  cells.

1

23

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

19

20

21

22

23

24

25

26

27

28

29

3031

32

33

34

35

36

37

38

39

40

41

42

43

4445

46

47

48

49

50

0 352

0 349

0 34

0 328

0 317

0 306

0 295

0 285

0 276

0 267

0 259

0 251

0 244

0 237

0 231

0 225

0 22

0 214

0 209

0 205

0 200

0 196

0 192

0 188

0 184

0 181

0 178

0 174

0 171

0 168

0 166

0 163

0 160

0 158

0 155

0 153

0 151

0 148

0 146

0 144

0 142

0 140

0 139

0 137

0 135

0 133

51

5253

54

 

56

57

58

59

60

61

62

63

64

65

6667

68

69

70

71

72

73

74

75

76

 

78

79

8081

82

83

84

85

86

87

88

89

90

91

92

93

9495

96

97

98

99

100

0 132

0 130

0 12

0 127

0 126

0 124

0 123

0 121

0 120

0 119

0 117

0 116

0 115

0 114

0 113

0 112

0 111

0 109

0 108

0 107

0 106

0 105

0 104

0 104

0 103

0 102

0 101

0 100

0 099

0 098

0 097

0 097

0 096

0 095

0 094

0 094

0 093

0 092

0 091

0 091

0 09

0 089

0 089

0 088

0 087

0 087

0 086

0 086

0 085

0 084

101

102103

104

105

106

107

108

109

110

111

112

113

114

115

116117

118

119

120

121

122

123

124

125

126

127

128

129

130131

132

133

134

135

136

137

138

139

140

141

142

143

144145

146

147

148

149

150

0 084

0 083

0 083

0 082

0 082

0 081

0 081

0 080

0 080

0 079

0 079

0 078

0 078

0 077

0 077

0 076

0 076

0 075

0 075

0 074

0 074

0 074

0 073

0 073

0 072

0 072

0 072

0 071

0 071

0 070

0 070

0 070

0 069

0 069

0 068

0 068

0 068

0 067

0 067

0 067

0 066

0 066

0 066

0 065

0 065

0 065

0 064

0 064

0 064

0 064

151

152153

154

155

156

157

158

159

160

161

162

163

164

165

166167

168

169

170

171

172

173

174

175

176

177

178

179

180181

182

183

184

185

186

187

188

189

190

191

192

193

194195

196

197

198

199

200

0 063

0 063

0 063

0 062

0 062

0 062

0 061

0 061

0 061

0 061

0 060

0 060

0 060

0 060

0 059

0 059

0 259

0 059

0 058

0 058

0 058

0 058

0 057

0 057

0 057

0 057

0 056

0 056

0 056

0 056

0 055

0 055

0 055

0 055

0 055

0 054

0 054

0 054

0 054

0 054

0 053

0 053

0 053

0 053

0 053

0 052

0 052

0 052

0 052

0 052

201

202203

204

205

206

207

208

209

210

211

212

213

214

215

216217

218

219

220

221

222

223

224

225

226

227

228

229

230231

232

233

234

235

236

237

238

239

240

241

242

243

244245

246

247

248

249

250

0 051

0 051

0 051

0 051

0 051

0 050

0 050

0 050

0 050

0 050

0 050

0 049

0 049

0 049

0 049

0 049

0 049

0 048

0 048

0 048

0 048

0 048

0 048

0 047

0 047

0 047

0 047

0 047

0 047

0 046

0 046

0 046

0 046

0 046

0 046

0 046

0 045

0 045

0 045

0 045

0 045

0 045

0 045

0 044

0 044

0 044

0 044

0 044

0 044

0 044

251

252253

254

255

256

257

258

259

260

261

262

263

264

265

266267

268

269

270

271

272

273

274

275

276

277

278

279

280281

282

283

284

285

286

287

288

289

290

291

292

293

294295

296

297

298

299

300

0 044

0 043

0 043

0 043

0 043

0 043

0 043

0 043

0 043

0 042

0 042

0 042

0 042

0 042

0 042

0 048

0 042

0 041

0 041

0 041

0 041

0 041

0 041

0 041

0 041

0 041

0 040

0 040

0 040

0 040

0 040

0 040

0 040

0 040

0 040

0 039

0 039

0 039

0 039

0 039

0 039

0 039

0 039

0 039

0 039

0 038

0 038

0 038

0 038

0 038

one space at the shallowest  (the root) and deepest points. A tableof D-values,  i.e. RA  values  for the  diamond-shaped pattern,  for

systems of  different sizes  is given  in Table 3. All one has to do is

find the D-value for the system with the same number of spaces as

in  the  real example, then divide that value into the value obtainedfor each of the spaces. This will give the  'real relative asymmetry'or RRA of the  space:

Page 127: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 127/296

The analysis  of settlem ent layou ts 113

or system:

 it  m

which for G is 0.1041/0.151 = 0.689. The D-value is the means toarrive at RRA in all cases excep t w hen calculating RRA from X ina settlement. In this case, because we are calculating the depthfrom a large number of roots (all the buildings in the system),instead of comparing to a diamond we compare to a 'pyramid-shaped' pattern, or half a diamond. The table of P-values is givenin Table 4. Otherwise, everything is as before. To repeat, RRAvalues will only be needed when comparing across systems of

different sizes. For looking at any particular case the ordinaryvalues printed by the computer will be all that is needed. Whenthey are used, however, whether D- or P-based, RRA values willnot be simply between 0 and 1, but above and below 1. Valueswell below 1 (of the order of 0.4 to 0.6 will be strongly integrated,while values tending to 1 and above will be more segregating.

Integration from X for the convex spaces2.05 In general, num erical analysis will be based on the axial

map. Before pr ocee ding to this , it is wo rth establishing on e or two

numerical properties of the convex map: RRA from X of theconvex spaces; and E-values for the convex spaces. RRA from Xcan be calculated on the basis of the depth values already assignedto the convex spaces: those adjacent and permeable to somebuildings being given the value of 1, those two steps away thevalue of 2, and so on. Simply add these, divide by the totalnumber of convex spaces, which gives the mean depth; thencalculate RA as per the equation and divide by the P-value for thatnumber of spaces. The value for G is 0.168, which is extremelylow. Much higher values will be found in recent housing layouts,

which characteristically distance convex space from the buildingentrances.

Control values for convex spaces2.06 The E-values are best calculated and recorded on the

convex map itself, rather than on the y-map. The interest here willlie in the relation between the convex size of spaces, theirdistance from the nearest building entrances and their E-value. InG, for example, there is very little depth from buildings in theconvex system, and the larger convex spaces are distinguished byhaving higher E-values than their neighbours. They do not, on

the other hand, have any special degree of connectivity tothe buildings. Convex size is therefore associated with increas-ing connectivity to segments of space, rather than increasing

Page 128: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 128/296

114 The social logic of space

Table  4. Table of P-values  for k  spaces, i.e.  RA  values for

pyramid shaped  complexes (see text) of k cells. Use only to

calculate  the real relative asymmetry (see text) from X.

 

2

3 0 410

4 0 331

5 0 278

6 0 241

7 0 212

8 0 190

9 0 172

  0 157

  0 145

 2 0 135

 3 0 126

 4 0 118

 5 0 111

 6 0 105

 7 0 099

 8 0 094

 9 0 090

2 0 086

2 0 082

22 0 079

23 0 076

24 0 073

25 0 070

26 0 068

27 0 065

28 0 063

29 0 061

3 0 059

3 0 058

32 0 056

33 0 054

34 0 053

35 0 051

36 0 050

37 0 049

38 0 048

39 0 047

4 0 045

4 0 044

42 0 043

43 0 042

44 0 042

45 0 041

46 0 040

47 0 039

48 0 038

49 0 038

5 0 037

5 0 036 101 0 0188 151 0 0128 201 0 0097 501 0 0039

55 0 034 105 0 0182 155 0 0125 225 0 0087 550 0 0036

6 0 031 110 0 0174 160 0 0121 250 0 0078 600 0 0033

65 0 029 115 0 0167 165 0 0117 275 0 0071 650 0 0030

7 0 027 120 0 0160 170 0 0114 300 0 0065 700 0 0028

75 0 025 125 0 0153 175 0 0111 325 0 0060 750 0 0026

8 0 024 130 0 0148 180 0 0108 350 0 0056 800 0 0025

85 0 022 135 0 0142 185 0 0105 375 0 0052 850 0 0023

9 0 021 140 0 0137 190 0 0102 400 0 0049 900 0 0022

95 0 020 145 0 0133 195 0 0100 450 0 0044 950 0 0021

  0 019 150 0 0129 200 0 0097 500 0 0039 1000 0 0020

permeability  to buildings - although this is always maintained

through  the continuous constitution principle.

The system seen from X2.07  In general RRA from X of the convex spaces and the

E-values of the convex spaces will index key aspects of how the

Page 129: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 129/296

The analysis of settlement layouts 115

Fig. 46 Integration core ofG, i.e. in this case the  25%most integrating spa ces,with RA values numberedin order of the degree ofintegration. Where spaceshave the same RA valuethey have been included inthe core, making the corelarger rather than smallerthan 25% of axial lines.

system looks from th e build ings w hich m ake up the settlement -that is, from the point of view of the inhabitants. A high RRA fromX - and certainly a value over 1 - will index the degree to wh ich

buildings are to be found in groups segregated from each other,although it says nothing about the size of those groups. Thedistribution of E-values for convex spaces in relation to buildingentrances will then indicate the degree to which the convexsystem is controlled from the buildings. These may constitute allor most of the convex spaces (as at G) or concentrate on the strongor the weak E-value spaces. In a prison, for example, the strongcontrol convex spaces are never constituted by the cells - forobvious reasons.

The axial integration 'core '2.08 Let us assume that we have integration and control

values for all the spaces in the axial system. What we are inter-ested in is the distribution of these values. A good way to beginis by re-drawing the axial map starting with the lowest RA line -i.e. the most integrating - and working from low to high. It willalways be interesting to see where the most integrating lines areand what they relate to in the system; but more important is whattype of pattern th e strong integrating spaces m ake. A useful deviceis to mak e a ma p of the 10% , 25% or 50% most integrating sp aces,or of a given num ber of spaces if the system is large and comp lex.

Fig. 46 shows that at G these make a system strongly biasedtowards one end of the town in the direction of the nearest largeneighbouring town, and towards much of the periphery, butstrong integrating lines also pass through the centre and make tworings, one close to the centre of G, and the other linking the centreto the periphery. This map might be thought of as the core of thesettlement. We may then take the other extreme and map the 25%least integrating sp aces, i.e. those with the highest RA values. Fig.47 shows their distribution at G, showing that they tend to clusterin the quieter zones of the settlement.

High and  low  integration  maps2.09 We may extend th is and m ap all the axial spaces below

mean RA on one map, and all those above on another. Fig. 48(a)

Page 130: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 130/296

116 The social logic of space

shows that at G the low RA system makes a kind of circle with aY-shape inside it, while the high RA system fills in the threeinte rstic es form ed by the Y and the ou ter circle (Fig. 48(b)). Howma ny sp aces the re are in each ma p is itself of interest, since fewerwill imply more integrative or segregative spaces. Fig. 49 showsFigs.  48(a) and (b) combined.

The control core2.10 With E or control values we may proceed slightly

differently. Instea d of taking the 'best 2 5% ' of lines, we may takeinstead the least set of lines that acco unts for  25% of the control inthe system. All we need to do is to draw an axial map starting fromthe highest E-value line, and work down until we have accounted

Fig. 47 25% mostsegregating spaces in G.

Fig. 48(a) Spaces abovemean integration at G.

(b) Spaces below meanintegration at G.

Page 131: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 131/296

The analysis of settlement layouts 1 1 7

for 25% of the E-value in the system . Fig. 50 shows h ow few linesthis implies at G (excluding the effect of the nondistributed space(37 in Fig. 45)).

Combined maps2.11 We may then m ake a wh ole series of map s by perm utat-

ing these properties, i.e. a map of spaces with both high integra-tion (low RA) and high control (high E), with low integration andhigh control, with high integration and low control, and with lowintegration and low control. These may be made both at the 25%level ( + + / - - ) and at the 50% ( + / - ) level as in Table 5, taking

percentages of the numbers of spaces in the case of RA, and totalvalue for E - again exclud ing the effect of nond istributed space 37from high control maps.

Table 5.  Key to Figs. 51-58(a).

c

  cfl

Control E-value

Strong

R A - -

WeakRA+ +

StrongE+ +

Fig. 51

Fig. 53

WeakE - -

Fig. 52

Fig. 54

Control E-value

gXJ Strong

§>  RA

~£  Weak£  RA+

Strong

E+

Fig. 55

Fig. 57

WeakE -

Fig. 56

Fig. 58(a)

Fig. 49 Integration -segregation m ap of G.Integrating spaces arerepresented by solid linesand segregating spaces by

dotted lines.

Fig. 50 Axial spaces at Gwh ich account for the top25% of the total con trol

value - in effect, the 'strongcontrol' m ap. Space 37 hasbeen eliminated to give afigure for the distributedsystem only.

Page 132: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 132/296

118 The social logic of space

Some main dim ensions of the  settlement2.12 On the basis of these maps a series of points can be

made which reveal something of the local and global structure ofthe settlement:

(a) only three lines are in both the inte gra tion ++ (RA ) andcontrol++ (E++) maps. One of these lies on the edge of thesettlem ent, (Fig. 51), wh ile the other tw o are the lines that link thecentre to the two ends , one in the direction of another main neigh-bour. Both of these lines go to but not through the centre. Sinceassociation with high integration must make high control highglobal control (integration being the global measure), it is clear

Fig. 51 Spaces at  G  withboth strong integration and

strong control(R A — E+ + ) .

Fig. 52 Spaces at G  withstrong integration and weak

control (RA—E+ +   .

Fig. 53 Space   at G  withweak integration and strong

control (RA++E++): the  ba lcony access spa ce in G.

Page 133: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 133/296

The analysis of settlemen t layouts 119

Fig. 54 Spaces at G withweak integration and weakcontrol (R A ++ E —): thesespaces are, on the w hole,both short in terms of

metric length and 'dead' interms of levels ofoccupancy and use.

Fig. 55 Spaces at G withstrongish integration andstrongish control (RA-E+):

this map contains most ofthe larger conv ex spaces inG (see also Fig. 61).

Fig. 56 Spaces at G withstrongish integration andweakish control (RA—E—):note that these line s do notpenetrate the heart of Gfrom the ou tside ascompared with those lineswh ich appear in Fig. 55.

Fig. 57 Spaces at G withweakish interration andstrongish control (RA+E+).

Page 134: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 134/296

120 The social logic of space

Fig. 58(a) Spaces at G withweakish integration and

weakish control (RA +E -).

Fig. 58(b) Spaces at G withweakish integration and

either weakish or strongish

control (Figs. 57 and 58(a)combined).

that the strongest global control structure of the settlement mustbe given by these three lines;

(b) the strongest difference between the high integration andhigh control maps lies in the number of vertical lines that havehigh integration (R A - - ) but low control ( E - - ) . A carefulinspection of the maps (Fig. 52) will show that each of the fourbest such lines intersects one of the three strongest high integra-tion-high control lines (Fig. 51). These lines therefore integratethe system across its global control lines, and in doing so, bringeach of the three low integration zones within a short section of

global control space of each other.(c) in the h igh control ma p there are exactly three free-standingspaces (see Fig. 59). Two of these spaces are also found in the lowintegration (RA+)-high control (E+) map (Fig. 57). If all threespaces in Fig. 57 are added to the low integration (RA+)-lowcontrol (E-) map (Fig. 58(a)), itself very fragmented, then theyhave the effect of forming the three clusters of the low integrationzones (Fig. 58(b)).

Linking axiality to convexity

2.13 Finally, if we extract from the convex map all theinterior spaces with marked convex extension (Fig. 60) and

Page 135: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 135/296

The analysis of settlement layouts 12 1

experimentally overlay these on the various maps, we find that byfar the best fit is with the high integration (RA—)-high control(E+) map (Fig. 61). This axial map links together nearly all themajor conve x spa ces, with th e excep tion of the one adjacent to the

church. On all other maps the distribution of strong spacesappears more random.

Interpretation

The  global orientation  of the system3.01 These points by no means exhaust the possibilities of

visual and num erical a nalysis, but they do permit us to sketch aninterpretation of G using the postulates set out earlier in thisChapter (pp. 95-7 ). The last point m ade was pe rhaps the m ostfundamental: in G, convex space is invested in the strong global

Fig. 59 Spaces at G with50%  of the top controlvalue, i.e. the strong controlmap.

Fig. 60 Largest convexspaces in the interior of G.

Fig. 61 Map show ing theinterior lines of the highintegration, high controlaxial map superimposed onthe largest conv ex spac es.This shows that more spaceis inve sted in global ratherthan local relations in thesystem.

Page 136: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 136/296

122  The social logic of space

system, that is, in the set of spaces tha t have both high integrationand high con trol. Space is not invested in local relations, as wouldbe required if the settlement were to be given a territorialinterpretation. This is confirmed by the lack of any specialinvestment of buildings in convex expansion. It is also confirmedby the fact that the global internal structure of the settlementforms the Y-within-the-circle shape, the points of which are thethree main routes into the system from the outside. The conclu-sion is unavoidable that G is globally structured to make theinhabitant-stranger interface rather than the inhabitant-inhabi-tant interface.

The JocaJ co ntrol of the system3.02 This is only a part of the story. There is also the

division of the settlement into the core - the Y-in-a-circle - andthe three low integration zones. These zones are where strangersare less likely to penetrate. They are also among the zones wherethe buildings are densely congregated. These 'quiet' areas areachieved without cutting them off from the main structure of thesettlem ent. T his has the effect that, although the system as a wholeis geared to the accessing and control of strangers, there is also aninhabitant-orientated global structure which is made up of thesequieter areas plus their strong transverse connectivity with eachother, and with the main stranger interface, through the strongvertical lines. The inhabitant can thus see a very different settle-

me nt to the one the stranger sees. The high p ermeab ility of the lowintegration areas seems geared to allowing the inhab itant out morethan letting the stranger in. The advantage to the stranger on thecontrol dimension is counterbalanced by the advantage to theinhabitant on the integration dimension. The system as a whole isgeared to the accessing, but at the same time to the control ofstrangers.

Systematic interpretation3.03 Interpretation is, of course, more of an art than a

procedure and it is never possible to establish in advance whichspatial dimensions are likely to be the most relevant. It does,however, help to work systematically, insofar as this is possible.Working systematically means essentially three things at thisstage:

(a) working from a summary of the main spatial features of thesystem as shown by the visual and numerical analysis - plus anyother features which one feels are present but which have not yetbeen expressed through representations or numbers;

(b) using the set of postulates as a general interpretativeframework - always remembering that this aspect of space syntax

is only a theory and may well not be adequate to explain one'smaterial in a way that is satisfactory;

Page 137: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 137/296

The analysis of settlement layouts  123

(c) finally, and most simply, trying to see the settlement as aninterface between the two kinds of social relations: those amonginhabitants and those between inhabitants and strangers. Try tobuild a general picture of how the structure of the interfacegenerates and controls these relations. When attempting to dothis ,  however, never forget that the internal structure of thedwelling may be important to a full understanding of the system.

Some differences

Thes e global and local prope rties of G will turn out to begenotypical for a substantial class of settlements. Equally, otherclasses will vary and even invert these properties. There is noscope in this primarily theoretical exposition for an exhaustive

examination of such cross-cultural variations. This will be thethem e of a sub sequ ent vo lum e. For our present argum ent it will bemore im portant to show that the analytic technique can pin-pointand elucidate certain key aspects of different settlement formscrucial to the social theory of space, which it is the aim of thisbook to develop.

We may begin with an example close to home: the piecemealdevelopment in the nineteenth century of the area of InnerLondon now known as Barnsbury, bounded on the west by theCaledonian Road, on the east by the Liverpool Road, on the northby Offord Road and on the south by Copenhagen Street (Fig. 62).

8

The convex map of the area is not given, but it has an RRA fromX of 0.105 (i.e nearly all the convex spaces are constituted) and agrid convexity of 0.372; both figures are close to those of G, but animprovement in the direction of better constitutedness and a moreconvexly synchronised form.

The axial map is shown in Fig. 63. This map has a grid axialityof 0.232, slightly less than G (the non-axial organisation of thesquares is responsible) and an axial ringiness of 0.316, slightlymore than G. Its mean integration from all lines is 0.704, slightlyless integrated than G. The axial ma p becomes especially interest-

ing when we plot its integration core and its most segregated line s.Figure 64 shows the eleven most integrating lines (chosen to be

the same number as in G) numbered in order of integration. Themost integrating lin e of all is - gratifyingly, but far from obvious ly- the 'villag e-line', that is, the relatively short line where the griddeforms, and where the main shop, pub and garage are located.The second connects the village-line to the west carrier, the thirdis on the east carrier  itself,  the fourth connects the village-line tothe north carrier, and so on. In other words, the integrating linesquickly construct a pattern very similar to G: long axial lines infrom the carrier, with shorter lines at the centre, and with some

parts of the carrier included as well. The remainder of theintegrating map then amplifies this into a partial grid.

Page 138: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 138/296

124 The social logic of space

Fig. 62 Ordnance Surveymap of Barnsbury area,

North London.

Topo logically, therefore, both G and Barnsbury are, axiallyspeaking, incomplete wheels, with a hub at the syntactic centreand spokes connecting the centre to a partially realised rim. Aswith G, the high segregation (though still for the most part highlyconnected) axial lines (Fig. 65) are then to be found forming zones

in the interstices of the wheel; and in this case it turns out thatthese line s circum scribe more or less, all the main squ ares. This isa reversal compared to G, where the larger convex spaces werelocated o n the integrating structu re. Here the larger spaces - albeitwith boundaries around them - are conspicuously located in therelatively segregated areas, although these areas remain veryshallow to the integrating structure.

This is one of the ways in which the relation between axialityand convexity creates the characteristic pattern of Barnsbury. Butthere is also another, co ncernin g not the most segregated structurebut the main integrating lines. It concerns how the village is

defined. Axially the village is conspicuous not only by being themost integrating line in the system, but also by being a sudden,

Page 139: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 139/296

Page 140: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 140/296

126 The social  logic of space

Fig. 64 Integration core ofBarnsbury, numbered in

order of integration values.

frequency of convex spaces, coupled to their strong axial linking,shows again that at the local level also the spatial definition of the

'village' in Barnsbury has convex correlates. This permutation ofour major spatial variables will again turn out to provide acharacteristic means of local definition of areas in London.

Now let us turn to a very different kind of system: a purpose-built modern estate (in fact about half of it) in which a consciousand careful attempt has been made (in reaction against thehigh-rise era) to reproduce many of the generic properties oftraditional European settlements. The task for syntax is to try toshow whether these properties have been genuinely reproducedand, if not, to detect the differences.

A glance at the ground plan will show immediately why the

estate appears to be a true copy (Fig. 66). The layout clearly has alocally beady ring form. Equally clearly it also attempts to

Page 141: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 141/296

The analysis of settlement  layouts 127

Fig. 65 Segregation ma p ofBarnsbury.

constitute the open space structure by opening the dwellings -adm ittedly by way of high-w alled front gardens - directly on to it.The question therefore becomes: how far does it reproduce theglobal spatial properties of traditional settlements?

We may begin by looking at the most global level, the level atwhich the estate is embedded in the surrounding area. Fig. 67 isan axial map of the area prior to the building of the estate. Fig. 68is the same map after the building of the estate. Even a cursory

inspection of the new map reveals some rather startling prop-erties.  Of course the axial map immediately shows a dramaticchange in the scale of the new estate compared to the surroundingarea, in that in general axial lines are much shorter. But moreimportant is the way in which the shorter lines are related both toeach othe r, and to the ou tside, to create both a high degree of axialdiscontinuity from the surrounding area  —  there are no axial linesthat go from th e sur rou ndin g area into the interior of the scheme -cou pled with a great deal of de pth once the estate is entered. T hisproperty on its own ought to be enough to virtually eliminate thepassage of strangers throu gh th e schem e, ensuring that most of the

spaces will be deserted for much of the time.But it is not on ly w ith respect to the ou tside that the estate uses

Page 142: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 142/296

128 The social logic of space

Fig. 66 Part of Marque ss

Road estate in Isl ington.

depth in a most untraditional way. Internally the axial map is farmore segregated than G, its mean RRA being 0.9, as opposed to G's0.664, which is a very substantial increase for a system of thatsize. The reason is fairly obviou s. A substan tial prop ortion of linesadd depth by going from only one line to another. Rings do nottherefore on their own produce integration. The axial ringiness ofthe system is in any case not what it appears to be at first. Theaxial ringiness is 0.160 compared to G's 0.277. On grid axiality tooa substantial reduction is shown by the value of  0.121,  comparedto G's 0.263.

Looked at from t he p oin t of view of X, also, the estate bears littleresemblance to a traditional settlement. Convex RRA from X is

Page 143: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 143/296

The   analysis  of  settlement layouts 129

Fig. 67 Ma rquess Road areain 1897 - axial map.

0.91 compared to G's 0.203. To amplify this, if we mark depthvalues from the building entrances on the convex spaces, we findhigh values crow ded r oun d the entran ces to the estate - one of themore subtle, probably unconscious, ways in which modernestates are cut off from the outside world. Internally too theconvex system is broken up. The decomposition map in Figure 69shows how the clusters of constituted spaces tend to form islands

separated from others by unconstituted spaces.Finally if we take the best eleven spaces (the same number aswe used for G to describe the integrating core), then we see thatthey form a structure that hugs the edges of the estate, andcompletely fails to penetrate the deeper parts of the scheme (Fig.70).

The 25% control m ap is also revealing. It show s a strong controlsystem which is fragmentary, and dispersed through the estate.We must conclude, all in all, that the estate is a spatial patternwithout an effective global  structure.

In spite of its strong, genotypical differences in comparison to

traditional settlement forms, the estate is still a distributedsystem. Th e prope rties we have found in it, however, are found to

Page 144: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 144/296

130 The social logic of space

Fig. 68 The MarquessRoad area after the build ing

of the Marquess estate -axial map.

a muc h greater degree in the - far more prevalent - mod ern layoutforms which superimpose hierarchies of boundaries on the prim-ary cells - bounded estates internally composed of boundedblocks, for example. These are strongly nondistributed systems.Such systems are of great interest - as is their social logic -

because in many ways they have properties which are syntactical-ly the direct inverse of traditional forms. Since the contemporary'pathology' of space is largely concerned with such systems, it isworth trying to uncover some typical properties.

We may begin w ith the pathology of a concept. Modern theoriesof space in almost all cases stress three related principles: thatspace should be hierarchically arranged through a well-markedseries of zones from 'public to private';

9  that the object of spatial

organisation must be to encourage specific groups of people toidentify with particular spaces by excluding others from access;

10

and that those spaces identified with particular groups should be

segregated from each other.11   These ideas are pervasively presentwhen space is discussed, often appearing to act as a taken-for-

Page 145: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 145/296

The analysis of settlement  layouts

o

131

o o

Fig. 69 'Decom position'map of part of M arquessestate, showing how convexspaces adjacent to doorsform islands segregatedfrom other islands by'unconstituted' spaces, i.e.spaces faced with blankwalls. Note that this is themost generousinterpretation possible. Ifall the articulation of theconvex spaces is taken intoaccount, then the'decomposition' effect ismuch stronger.

\ i ./ * 7 38  1 wA  r-

Fig. 70 Integration core ofpart of Marquess estate

r

1

Page 146: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 146/296

132 The social logic of space

Fig. 71 An 'everywherebranching' tree.

Fig. 72 An 'everywherebranching' tree seen, left-

right, from one of itsendpoints.

granted model of 'good' spatial order rather than as an explicitlystated theory. Curiously, they are often assumed (and sometimeseven stated) to be the guiding princ iples of traditional settlemen ts,althou gh ou r exam ination of G wo uld suggest almost the

opposite.12

However, these principles are realised today in whole familiesof different-seeming forms, and the abstract spatial model thatthey imply can be succinctly stated. It is that of an asymmetric,nondistributed structure, or more simply a 'tree', everywherebranching and becoming deeper, with the primary cells at thedeepest points of the tree (Fig. 71).

If instead of looking at this model from the point of view of Y,the c arrier, w e look at it from the p oint of view of a single b uild ingor primary cell, and to clarify this we set it out as a left-right

progression from this building to Y, then it can immediately beseen to have one consistent property when viewed from thebuilding: as one moves away from the building entrance, at everystep one is as many steps away from the nearest other entrance asfrom the original. For this reason we may call it the 'no neigh-bours '  model - although it might be better to talk about the 'noneighbours' principle since the model itself is rarely likely to berealised in its pure form (Fig. 72).

However, as a guiding principle, we may see how - with somelicence - it underlies the compound form of the unfortunate Ik(Fig. 73), which can be represented from one of its constituent

buildings as in Fig. 74, with a new convention adopted for thenondistributed elaboration of the system: each time a higher orderbou nda ry is superim pos ed on a building or group of buildings it isalso represented by a dot, with a loop joining the dot to   itself,

showing the scope of the boundary.13

In spite of its density and contiguity, the syntax of boundaries,

Page 147: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 147/296

The analysis  of  settlement  layouts 133

Fig. 73  Ik compound.

Fig. 74  Ik compound, seenleft-right from one of itsprimary ce lls.

spaces, and permeabilities guarantees that the conduct of every-day life will exclude accidental contact with neighbours  as

neighbours - that is, in the vicinity of their own dwellings.Whatever contacts may occur accidentally - and the axial breakupof the space guarantees that these will be as little as possible inany case, as contact is obviously m inimis ed if lines are short -they are as it were projected aw ay from the dw elling itself. This isexactly the opposite of G, of course, where accidental contactswill inevitably occur in the vicinity of dwellings, and where anysight lines minimise the reductive effect of local breakup of spaceon numbers of such contacts.

Let us now look at a very ordinary area of London - part ofSom erstow n, just north of the Euston R oad - in the two pha ses of

its growth. Fig. 75 is the area as it originally grew in thenineteenth century and Fig. 76 is the interface map of its closed

Page 148: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 148/296

134 The social logic of space

T K E N F R D M O R D N N C E S U R V EY

Fig. 75 Somerstown,London, in the nineteenth

century.

Page 149: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 149/296

The  analysis of settlement layouts 135

Fig. 76 Interface map ofnineteenth-centurySomertown.

Page 150: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 150/296

Page 151: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 151/296

The analysis  of  settlement layouts 137

Fig. 78 The interface mapof Somerstown now .

Fig. 79 The block markedA in Somerstown (Fig. 77).

Page 152: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 152/296

138 The social logic of space

Fig. 80 Permeability mapof block marked A in Fig.

77 .

Fig. 81 Justifiedpermeability map of sub-

block B in Fig. 80.

then draw an unjustified perm eability map of the whole estate(Fig. 80), and justify the block marked B (Fig. 81).

The larger interface map and the justified map of the blocktogether give a graphic representation of how the syntax of this

system will be experienced. It is not a pure 'no neighbours' modelbut it is not an exaggeration to say that its logic pervades thewhole arrangement. The structure of open space everywhereintervenes, as it were, between the small isolated groups ofdwellings, whereas previously the spaces constituted by the -much larger - groups of dwellings were continuous. Note that inFig. 80 only the ground level of the schem e has been represen ted.The syntactic effects discerned become even more pronouncedwh en the - in this case few - higher storeys are inclu ded , as in Fig.81.

Thus the ground level logic of the earlier street scheme isinverted in ways that will be sustained as buildings becomehigher. There is nothing syntatically new about high-rise housingforms: syn tactically their ge neric logic is established in the typicallow-rise public housing schemes that preceded them. For thisreason if no other w e can begin to discern that perha ps high-rise isnot in itself the problem, and low-rise is not itself the answer.

The problem of the modern urban surface lies, we wouldsuggest, in its complete reversal of virtually every aspect of thespatial logic of urban forms as they evolved. A careful syntacticexamination of the new type of surface will show how numerous

and, in some instances, how subtle these reversals are. They canmost succinctly be explained in terms of the X-x-y-Y  model withwhich we began alpha-analysis, coupled to the main syntacticrelations and the ideas of size (synchrony) and numbers ofrelations (description).

It is clear that the system that was shallow from   Y  (the outside)has become remarkably deep, (or asymmetric): also the systemthat was distributed, or ringy, has become more and more tree-like,  or nondistributed, as movement occurs from  Y  to X. Whatwas a direct, single interface has becom e a complex, multilayeredinterface with various levels of x intervening betwe en X and y. As

a result, the closer convex spaces are to Y (i.e. in the survivingstreet system, which by our definition of Chapter 2 is no longer a

Page 153: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 153/296

The  analysis  of  settlement  layouts 139

street system), the less likely it is to be constituted by buildingentrances - that is, to have relations of direct adjacency andpermeability. On the contrary, the street is dominated by relationsof adjacency and impermeability from buildings to convex spaces.

Blank walls face the stranger wherever he moves.Another way of formulating this is to say that, seen from the

point of view of X, the system of y-space has become like a pyra-mid, with more and more space projected away from X, just as ithas already been seen to be away from Y. This is important, sinceit means that th e system of space is deep from X (the dwellings) aswell as deep from Y (the outside). This two-way introduction ofindirect, or asymmetric relations is one of the key reasons for thecuriously fragmentary and disembodied character that muchmodern space possesses. These properties can, of course, be

expre ssed num erica lly: in Fig. 82 the RRA from Y (treating thestreet system as carrier) is RRAd = 2.262, while the RRA from X isR RA p= 1.285.  This 'two-way depth' property can be seen evenmore strikingly when we consider where the larger spaces are. Inmost cases it will be found that the larger (fatter) the space, themore likely it is to be deep from b uildin g entranc es an d de ep fromY. In other words, symbolic emphasis is given to spaces thatexactly expre ss this p rinc iple of the spatial segregation, both fromthe primary cells and from the outside. This property will usuallyhold regardless of the geometric location of the larger spaces. Forexample, in the block immediately below the one we have

illustrated in Somerstown, the vast central convex space is severalconvex steps from both dwellings and the outside in spite of itsgeometric position. Such spaces are, of course, amongst the leastused of spaces in the new urban surface, as would be inferredfrom their syntactic description.

A further genotypical relation between size and syntax isrelated to the above. In general, the closer the movement towardsthe entrances to buildings the smaller the convex spaces are likelyto be. But there is also a relation b etween the des cription of spaces(i.e.  the number of relations) and depth, in that the most relations

to spaces (those with the primary cells) occur in these convexlysmall, deep spaces.But in spite of the relation between description and depth, the

Fig. 82 Pyramid map ofhow the space structure ofsub-block B in Fig. 80 looksfrom the po int of view ofthe dwellings.

Page 154: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 154/296

140 The social logic of space

effect of the arrangement of y-space is to make the groups ofdwellings deep from each other. They become locally concen-trated, but globally segregated from each other. Seen in terms ofthe formal model, these X, the dwellings, are segregated withinthemselves from y-space (increasingly as convex spaces becomelarger),  and from Y, the outside world. In other words, the doubleinterface - between inhabitants and inhabitants, and betweeninhabitants and strangers - has been prised apart in terms of bothits constituent relations. Inhabitants no longer relate to each otheras neighbours, other than in the smallest groups, as a result of theincrease d in terna l segregation of X; wh ile inhabitan ts neverinterface w ith strangers in their role as inhab itants, because of thedepth of y from X; and strangers never penetrate to X, because ofthe depth from Y.

In spite of its superficial appearance of greater order then, themodern surface is characterised above all by a loss of the globalstructure that was so pronounced a property both of an organictown and an area of piecemeal redevelopment in nineteenth-century L ondon. It is extraordinary that unplanned growth shouldproduce a better global order than planned redevelopment, but itseems undeniable. The inference seems unavoidable that tradi-tional systems work because they produce a global order thatresponds to the requirements of the dual (inhabitants and stran-gers) interface, while modern systems do not work because they

fail to produce it. The principle of urban safety and liveliness is apro duc t of the way both sets of relations are constructed by spac e.Strangers are not excluded but are controlled. As Jane Jacobsnoted many years ago, it is the controlled throughput of strangersand the direct interface with inhabitants that creates urbansafety.

14  We would state this even more definitely: it is the

controlled presence of passing strangers that polices space; whilethe directly interfacing inhabitants police the strangers. For thisreason, 'defensible space', based on exclusion of strangers andonly on surveillance of spaces by inhabitants can never work.

An excu rsion into social interpretation: two soc ialparadigms of space?

Thus we see in the old and new urban surface two completelydifferent paradigms of spatial organisation, in many senses theinverse of each o ther. But where in society can we find the originsof such differences? And how can it be explained that un der somecircumstances society seems to generate one type of spatial order,and under others a quite different one?

The answer to this question is the subject of the rest of the book.But even at this stage, and using only those concepts so farintroduced, it is possible to sketch some broad theoretical ideasabout w hy this bifurcation of spatial forms shou ld be found. In the

Page 155: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 155/296

The analysis of settlement layouts  141

brief analysis of societies seen in terms of their spatial andtranspatial properties sketched in Chapter 1 (pp. 41-2), it wassuggested that every society has spatial groups of people, wholive and move in greater proximity to each other than to others,

and transpatial groups based on the assignation of different labelsto different groups of individuals. A label grouping was calledtranspatial because the grouping in no way depends on spatialproximity, although it could coincide with a spatial grouping.Two different pathways of development of such a system werenoted: cases where spaces and labels corresponded to each other,that is, all the me mb ers of the spatial group sh ared th e same label;and cases where spaces and labels were in a noncorrespondencerelation, that is, the label groups were distributed among thevarious spatial groups.

Now if they are to reproduce themselves as systems, these twotypes of system will have quite different internal logics. Ina correspondence system, encounters resulting from physicalproximity, through membership of the same spatial group, andencounters resulting from label sharing, through membership ofthe same transpatial group, will reinforce each other, and will doso at the expen se of relations w ith mem bers of other spatial - andby definition transpatial - groups. Of its own logic, therefore, thesystem will tend to become locally very strong, and will requirenot only restrictions on encounters, but also strongly definedspatial boundaries. The strength of the system will be a function

of its ability to maintain correspondence, and this must inevitablylead in the direction of exclusivity, strong rules, strong bound-aries,  and an internally hierarchical organisation. This is thenatural logic of the correspondence principle (which is anothername for the territorial principle). It does not mean that allsystems with correspondence at any level will behave in this way.It does mean however, that to the extent the system depends oncorrespondence at more than the primary cell level in order toreproduce itself as a system, the more it will tend to follow itsinternal logic.

A noncorrespondence system in contrast will only succeed inreproducing itself if it works on the contrary principles. In such asystem the two types of grouping are split; the spatial groupingworks locally, as it must, but the transpatial grouping worksacross space, relating individuals in different spatial groups toeach other, and causing them to encounter each other. Thelabelling will only remain powerful in the system as it reproduc esitself to the extent that the label group is realised in terms ofencounters between members of different spatial groups. Thesystem must therefore aim to maximise encounters across space ifit is to repro du ce itself. However, since the local enco unter system

does not depend on labels to reinforce it, then locally also thesystem must tend to maximise encounters, and this means

Page 156: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 156/296

142 The social logic of space

maximising encounters between members of different transpatialgroups. Transpatial labels must in effect be disregarded locally ifthe system is to work. A noncorrespondence system thereforetends ,  insofar as it succeeds in reproducing  itself,  to be globally

rather than locally strong. Both within the spatial group andbetween spatial groups it must seek to maximise its encounterrate,  and the function of the transpatial grouping will be topromote these encounters across space. Of its own logic, there-fore,  the system must depend on non-exclusivity, weaker rules,weak boundaries and lack of hierarchy. It must seek to maximiselocal encounters regardless of labels, and global encounters re-gardless of spatial group. It is, for example, an important genera-tive principle for urban systems that key facilities - those thatgenerate most movement in the system - are located to organise

their potential in the global encounter system rather than purelythe local. Of their very nature, therefore, probabilisatically usedfacilities will tend to generate a noncorrespondence system ratherthan a correspondence system.

It follows naturally that a noncorrespondence system willdepend spatially on exactly the kind of openness in both inhabi-tants ' and inhab itants-stran gers' relations that we find in systemslike G, co upl ed to the relatively w eak and diffused local organisa-tion that orientates the system towards the global level; and, ofcourse, a correspondence system will need by some means orother to construct a system with the properties associated with

closedness, coupled to a strong and bounded local organisation.In both cases there w ill be an intimate link between the principle sof spatial organ isation an d h ow the society works. This leads us todefine a principal axiom for the whole syntax theory of space:spatial organisation is a function of the form of social  solidarity;and different forms of social solidarity are themselves built on thefound ations of a society as both a spatial and a transpatial system.This will be our guiding principle from now on. But beforeproce eding to a more extensive exam ination of the social determi-nants of space, we must first expand our syntactic arguments in

the direction of the social by looking at the internal structure ofbuildings. Buildings are distinguishable from settlements by theirtend enc y to emb ody a muc h higher degree of social information intheir spatial form. Their analysis will require an expansion of thetheoretical arguments in such a way as to show that many moredimensions of social meaning can be assimilated to the syntaxmodel by a simple extension of its principles. In this way we canapproach the relation of society to space with a unified model.

Page 157: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 157/296

Buildings and their genotypes

S U M M A R Y

This chapter adapts the analytic method to building interiors, arguing

that these are different in kind to settlement structu re, and not simply thesame type of structure at a smaller scale. The method shows howbuildings can be analysed and compared in terms of how categories arearranged and related to each other, and also how a building works tointerface the relation between the occupants and those who enter asvisitors. Small and large examples of domestic space are examined toshow in principle that spatial organisation is a function of the form ofsocial solidarity - or the organising principles of social reproduction -in that society.

Insid es an d ou tsides: the reversal effect

A settleme nt, as we have see n, is at least an assemblage of p rimarycells,  such that the exterior relations of those cells, by virtue oftheir spatial arrangement, generate and modulate a system ofencounters. But this only accounts for a proportion of the totalspatial order in the system, namely the proportion that liesbetween the boundary of the primary cell and the global structureof the settlement. No reference has yet been made to the internalstructure of the primary cells, nor to how such structures wouldrelate to the rest of the system. This section concerns the internalstructures of cells: it introduces a method of syntactic analysis of

interior structures, which we will call gamma-analysis; it de-velops a number of hypotheses about the relation between theprin cipa l sy ntactic p aram eters a nd social variables; and it offers atheory of the relations between the internal and external relationsof the cell as part of a general theory of the social logic of space.Since the shape of the general theory is not at all obvious fromwhat has gone before, some theoretical problems must be ex-plored before questions of analysis and quantification can beopened.

One of the most common assumptions about space, sometimesexplicit, more often implicit, is that human spatial organisation is

the working out of common behavioural principles through ahierarchy of different levels. Thus from the domestic interior, or

143

Page 158: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 158/296

144  The social logic of space

even from the in divid ual space, through to the city or region, it isassumed that similar social or psychological forces shape space,differing only in involving larger numbers of people and largerphysical aggregates.

1  The assumption is so common that it de-

serves a name: we might call it the 'continuum' assumption. If thecontinuum assumption were true, the analysis of interiors wouldsimply be a matter of taking the principles and techniques for theanalysis of aggregates and applying them on smaller scale. Unfor-tuna tely, this wo uld lead us to overlook a very fundam ental fact,one wh ich w hen taken account of adds a whole new dimension tothe system. We might call it the fact of the boundary.

A settlement presents itself to our experience as a continuousobject by virtue of the spatial relations connecting the outsides ofboundaries. By moving about the settlement we build up know-

ledge of these exterior relations until we have a picture of somekind of the settlement structure. The spaces inside the boundarieshav e a quite contrary prop erty: they are a series of - potentially atleast - separate events, not a continuous system. The samedrawing of boundaries that constructs a settlement as a con-tinuous spatial aggregate with respect to the outsides of cellscreates a set of discontinuous spaces on the insides of those cells,which do not normally present themselves to experience as acontinuous spatial system with a global form, but as a series ofdiscrete events, expressly and explicitly disconnected from theglobal system. They are experienced one by one as individuals,

not as a single entity sustained by physical connections. Thisproperty lies in the very nature of a boundary, which is to create adisconnection between an interior space and the global systemaround, of which it would otherwise be a part.

By virtue of this fact of disconnection, the set of spaces interiorto boundaries creates a different kind of system, one whose basicproperties have already been discussed at some length: a transpa-tial system. A transpatial system, we may remember, is a class ofspatially independent but comparable entities which have globalaffiliations, not by virtue of contin uity and proximity but by virtue

of analogy and  difference.  In such a system the nature of ourspatial experience is different from our experience of a spatiallycon tinuou s system. We enter a domain w hich is related to othersnot by virtue of spatial con tinuity, but of structu ral  comparabilityto others of its type. We experience it as a member of a classof such interiors, and we comment on it accordingly. The rela-tions between interiors are experienced as conceptual ratherthan as spatial entities, and the mode of organising globalexperience out of local observations is transpatial rather thanspatial.

This is the fundamental fact of the boundary. There is no

homogeneous continuum of spatial principles from the very largeto the very small. In the transition from large to small there is afundamental discontinuity where the system in effect reverses its

Page 159: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 159/296

Building s an d their genotyp es 145

mode of articulation of global experience out of local events. Inmoving from outside to inside, we move from the arena ofencounter probabilities to a domain of social knowledge, in thesense that what is realised in every interior is already a certainmode of organising experience, and a certain way of representingin space the idiosyncrasies of a cultural identity.

Even the continuous scale of spatial organisation is shown to beillusory by the reversal effect of the boundary. Behind the bound-ary, the reference points of space do not become correspondinglysmaller. On the contrary they expand through their primarilytranspatial reference. As a consequence of the nature of theboundary, the most localised scale of spatial organisation tends tobecom e the mo st global in its reference. The bou nda ry refers to theprinciples of a culture.

The duality of inside and outside adds a new dimension to therelation between  social solidarity  and space . A solidarity will betranspatial to the extent that it develops a stronger and morehomogeneous interior structuring of space and, in parallel,emphasises the discreteness of the interior by strong control of theboundary. The emphasis in such a case will be on the internalreproduction of a relatively elaborate model. Words like ritualisedand conformist might well be applied to such types of organisa-tion. The essence of a transpatial solidarity lies in the localreproduction of a structure recognisably identical to that of othermembers of the group. The stronger and more complex the

structure, therefore, and the more exactly it is adhered to, thestronger will be the solidarity. Such a solidarity requires thesegregating effect of the boundary to preserve the interior struc-ture from uncontrolled incursion. Solidarity means in this casethe reproduction of an identical pattern by individuals whoremain spatially separated from each other, as well as from thesurrounding world. A transpatial solidarity is a solidarity ofanalogy  and  isolation:  that is of analogous structures realised incontrolled isolation by discrete individuals.

In contrast, a  spatial solidarity  works on the contrary principle.

It builds links with other members of the group not by analogyand isolation, but by contiguity and encounter. To realise this itmust stress not the separateness of the interior but the continuityof interior and exterior. Movement across the boundary, whichwould undermine a transpatial solidarity, is the fundamentalcondition of existence for a spatial solidarity. In such circum-stances an elaborate and controlled interior cannot be sustained,but nor is it neces sary. En coun ters are to be generated, not limited,and this implies the weakening of restrictions at and within theboundary. A spatial solidarity will be undermined, not streng-thened, by isolation. In a spatial solidarity, therefore, the weaken-

ing of the boundary is associated with a weaker structuring of theinterior. Informality rather than ritual must prevail if the princi-ples of the system are to be sustained.

Page 160: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 160/296

146  The social logic of space

Thus the reversal of space that occurs naturally at the boundaryof  the  primary cell generates  a  dualism  in the  principles  of

solidarity that  can  relate society  to  space. An  analysis  of  spatialpatterns internal to the cell, and  those relating the interior to the

exterior, must therefore  aim to  capture  the  spatial correlates of

these bifurcating principles. This will  be  possible because  the

dualism reflects only  the  dual nature  of the  boundary, which  at

one and the  same time creates a category of space  - the interior  -

and  a  form  of  control  - the  boundary  itself.  This dualism  is

invariably present  in  spatial patterns within buildings.  The

method  of  analysis  to be  outlined  in  this section  on  gamma-analysis will centre  on  these  two  dimensions  and  their inter-relations.  It  will turn  out  that category  and  control  are  closelyrelated  to the  basic parameters  of  alpha-analysis. Relative asym-

metry in  gamma-analysis will articulate the relations of the space,that is, of the category embodied by the space; and ringiness - i.e.

distributedness  - in  gamma will articulate  the  relations  of the

boundary, that is the  relations  of  control on the  category.

A building  is  therefore  at  least  a domain  of  knowledge, in the

sense that  it is a  certain spatial ordering  of  categories,  and a

domain  of  control,  in the  sense that  it is a  certain ordering of

boundaries. Sociologically speaking, a  building relates this dual-ism to the  universe  of  inhabitants  and  strangers by reversing the

spatial  and  transpatial relations that were identified  in  alpha.Every building, even  a  single cell, identifies  at  least  one  inhab i -

tant ', in the sense of a person with special access to and control ofthe category of space created by the boundary. An inhabitant is, if

not a permament occupant of the cell, at least an individual w hosesocial existence  is  mapped into the category of  space within thatcell: more  an  inhabitant  of the  social knowledge defined  by the

cell than of the  cell  itself.  Inhabitant  is  thus  a  categoric co ncept,and therefore  a  transpatial entity, and in that sense the  inhabitantis part of a global categoric reality as a result of being map ped intothe local boun ded space of the cell, as well as being a member of a

local spatial reality.

With strangers  the effect is the opposite. Every building selectsfrom  the set of  possible strangers  a  subset  of  'visitors'  who are

persons  who may  enter  the  building temporarily,  but may not

control  it.  Pupils  in a  school, patients  in a  hospital, guests  in a

house,  and  prisoners  in a  prison  all  fall within this category of

being more than strangers, in that they have a  legitimate reason to

cross the boundary of a building, but  less than inhabitants, in thatthey have  no  control over that building  and  their social indi-viduality  is not  mapped into  the  structure  of  space within thatbuilding. In this sense a building also localises the global w orld of

strangers,  by the  same means  as it  globalises  the  local world of

inhabitants.  It  realises  a  categoric order locally, then uses  theboundary  to  interface this categoric order with  the  rest  of the

social world.

Page 161: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 161/296

Buildings and their genotypes 147

A building may therefore be defined abstractly as a certainordering of categories, to which is added a certain system ofcontrols, the two conjointly constructing an interface betweenthe inhabitants of the social knowledge embedded in the categor-ies and the visitors whose relations with them are controlled bythe building. All buildings, of whatever kind, have this abstractstructure in common; and each characteristic pattern that wewould call a building type typically takes these fundamentalrelations and, by varying the syntactic parameters and the inter-face between them , bends the fundamental model in one directionor anoth er, de pen din g on the nature of the categories and relationsto be constructed by the ordering of space.

In the sense that it is some ordering of space, then, a building isat least some domain of unitary control, that 'unitariness' being

expressed through two properties: a continuous outer boundary,suc h tha t all parts of the extern al w orld are subject to some form ofcontrol; and continuous internal permeability, such that everypart of the bu ilding is accessible to every other part without goingouts ide the bo und ary . To express this set of relations, and to avoidconfusion with definitions of a building that depend on it being,for example, under a single roof,  the term 'premises' will in futurebe used instead of 'building*. Premises are a domain of unitarycontrol with the boundary and permeability properties givenabove, whose internal relations are developed by syntactic meansinto a certain kind of interface between inhabitant and visitors.Gamma-analysis is therefore the analysis of these spatial relationsand controls realised though the permeability pattons of thesubdivided cell .

The analysis of the subdivided cell

Formally speaking, gamma-analysis is alpha-analysis interpreted   Fig. 83for permeability. The relation of contiguity in alpha becomes therelation of direct permeability in gamma; and the relation ofcontainment in alpha becomes the relation of controlling per-

meability in gamma. The elementary objects in gamma arecells with certain permeability properties. The gamma equiva-lent of the alpha closed cell is the cell with only one accessfrom the carrier (Fig. 83); while the equivalent of the alpha opencell is the cell w ith more tha n one access from the carrier ^(Fig. 84). Y

The translation into graphs, or gamma  maps,  is more straight- Iforward than with alpha, since every interior of a cell or subdivi-   Fig. 85sion of a cell can be concep tualised as a poin t and repre sented as acircle, with its relations of permeability represented by lineslinking it to others. Thus the cell with one entrance can beconceptua lised as a uniperm eable point  and rep resented as in Fig.85, while the cell with m ore than one entrance can be conceptual-ised as a bipermeable  point  and represented as in Fig. 86. The  Fig. 86

Page 162: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 162/296

148 The social logic of space

(a)

o(b )

Fig. 87

Fig. 88

carrier for any gamma structure is the space outside the cellconsidered as a point, and represented as a circle with a cross.When the carrier is added, the two structures in Figs. 85 and 86will become those in Figs. 87(a) and (b).

From thes e inital eleme nts, the same configurational generatorsas in alpha may be used to construct patterns with the propertiesof symmetry, asymmetry, distributedness and nondistributed-ness. In gamma two sp aces a and b will be: symmetric if a is to b asb is to a with respect to c, meaning that neither a nor b controlperm eability to e ach other; asy mm etric if a is not to b as b is to a,in the sense that o ne controls perm eability to the other from somethird space c; distributed if there is more than one independentroute from a to b including one passing through a third space c(i.e.  if a space has more than one locus of control with respect to

another); and nondistributed if there is some space c, throughwhich any route from a to b must pass. Thus, Fig. 88 shows a andb in a symmetric and distributed relationship with respect to c;while Fig. 89 shows a and b in a symmetric and nondistributedrelation with respect to c. Fig. 90 shows a and b in a nondistri-buted and asymmetric relationship with respect to c. Fig. 91

Fig. 89

Fig. 90

a

c

b

c

a b

V

Fig. 91

a d b

Page 163: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 163/296

Buildings and their genotypes 149

Qa  f > Fig.92

a d b

shows a slightly more complicated case, where a and b aresymm etric to each other with respect to c, but d is an asymmetricrelation to both with respect to c. This example therefore illus-trates a relation that is both asymmetric and distributed. Fig. 92inverts this and places d in a nondistributed and asymmetricrelation to a and b, which still remain symmetric to each otherwith respect to d (or to c).

We can now use the basic dimensions of the model to set up atechnique for the representation and analysis of permeabilitystructures considered as gamma maps. The first stage is a repre-sentational device (already introduced in alpha), which we call ajustified gamma map, and which is constructed in the followingway. Every space in the premises can be assigned a depth valueaccording to the minimum number of steps that must be taken toarrive in that space starting from the carrier, a step being definedas a movement from one space to another. A justified gamma mapis a graph in w hich spaces are represented as before by circles andpermeabilities by lines, and all spaces of the same depth value are

lined up horizontally above the carrier, with the lines represent-ing direct permeabilities between spaces drawn in, however longthey have to be to make the necessary connections. The procedureis rather like dissection: the premises are 'sliced' down the middleand 'pinned out* so that their internal structure is visible. Thejustified gamma map has the great advantage that it renders thebasic syntactic properties of symmetry and asymmetry, distri-butedness and nondistributedness very obvious - far more ob-vious than in an ordinary layout diagram. Because justifiedgamma maps are also graphs, they also permit easy measurement

of these syntactic properties. Thus justified gamma maps areintended to allow a form of analysis that combines the visualdecipherment of pattern with procedures for quantification.

Take, for exam ple, the four simple structures in Fig. 93, whosejustified gamma maps are set out in Fig. 94. Certain globalsyntactic p roperties of the structures are immediately visible as aresult of this representation. For example, it is clear that b and care distributed forms, whereas a and d are nondistributed. Whilecutting across this, b and d are relatively deep, or asymmetric,compared to a and c which are comparatively shallow, or sym-metric. In short, the four structures can easily be seen to be

permutations on the two underlying dimensions of the syntaxmodel.

Page 164: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 164/296

150

Fig. 93 Four theoreticalbuildings with identical

geometries and adjacencygraphs.

The social logic of space

ib )

This simple procedure shows that, from a syntactic point ofview, the four premises are very different from each other. Thereappears to be no syntactic genotype when considered from thepoint of view of the spatial pattern, in spite of the fact that interms of either geometry or their adjacency graphs all four areidentical.

If we consider the labels, and more precisely the relation of the

various labels to the spatial configuration, certain regularities canbe found. For example, space A is always as shallow as any otherin the complex, while B is always as deep as any other. D isalways on a ring, and wh ere th ere is no ring, as in case (a), there isno space D. Space E is always on a shortest path from A to B . A ndfinally, in contrast to all of these, the p osition of C is ran dom ised.Since it is the only one that is so, then this in itself might beconsidered significant. In other words, in terms of the relationsbetween syntactic positions in the complex and the labels com-mon to all the complexes there are certain genotypical trends.These are not strong, of course, but they illustrate the basicstrategies of gamma analysis. First, we consider the spatial pa tternalone and look for invariants and common syntactic themes.

Page 165: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 165/296

Buildings and their genotypes 151

Fig. 94 Justifiedpermeability maps for Fig.93.

(a) (b)

(c) id )

Second, we consider the relations of labels to syntax. Obviouslythere will be cases where both syntactic and label genotypes existfor a sample of premises, but the examples show that, formally atleast, the two can exist independently.

Both the analysis of spatial patterns alone and the analysis oflabels can be made m uch more precise by adapting and developing

Page 166: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 166/296

Page 167: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 167/296

Buildings and their genotypes 153

(a ) (b )

RA: 0.43 RA: 0.095

in fact a form tha t ma ximise s the differences in relative asym met-ry between the carrier and the deepest points, and since thedeepest p oints always n umb er one m ore than the rest of the pointsin the system, then the 'no neighbours' model is, formally as wellas intuitively, a powerful way of achieving the greatest segrega-tion of the greatest numbers. The social politics of space in effecttakes advantage quite systematically of this elementary mathema-tical fact.

If relative asymmetry in its various forms captures the symmet-

ry-asymmetry dimension of the syntax model in numerical form,then parallel measures of  relative  ringiness capture the distri-buted-nondistributed dimension, perhaps more than the controlvalues used in alpha-analysis. (However, recent research in build-ing interiors at UCL has increasingly used control values, ratherthan ringiness values for individual spaces.) Here we may beginwith a very simple fact, one that has already been discussed (p.94).  Since the least number of lines to connect a system of kpoints is k  — 1, and since k  —1   points can only give the form of a

RA: 0.472

(b )

Fig. 96 The same complexjustified from two differentpoints.

Fig. 97 The 'no neighbours'

model (see Figs. 71 and 72)seen from its carrier and anendpoint.

Page 168: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 168/296

154  The social logic of space

ringless tree (whether the tree is bushy or linear - symmetric orasymmetric - is immaterial), then any increase in the number oflines will result in rings forming in the complex.

Since distributedness can be defined in gamma as a relation

with more than one locus of control, then increasing the ringinessof the system will increase the distributedness both of thecomplex as a whole and of those points within it affected by therings. The relative ringine ss of the com plex will be (as with alpha)the number of distinct rings over the maximum possible planarrings for that number of points: 2p  —5   where p is the number ofpoints in the complex. The relative ringiness of a point (RR of) inthe complex will be the number of independent rings that passthrough that point over the maximum that can pass through it ,which will be p  —1  for p po ints sin ce any further lines from any

particular point will only repeat a link that has already beenma de. Th e relative ringiness from a point (RR from) can then takeinto account not only the number of rings in the complex, but alsothe distance from the point to all other rings in the complex, bymultiplying the relative ringiness of the complex as a whole by 1over the mean distance that the point is from each of these rings(adding 1 to exclude zeros). This m easure can then be applied notonly to the points that lie on rings, but also to those that do not:that is, it can be applied also to points in the nondistributed partsof a complex. Ringiness measures for the structures given in Figs.93 and 94 are also given in Fig. 95.

The essential proposition of gamma-analysis is that buildingstransmit social information through their interior structures boththrough general variations in the basic syntactic parameters, andalso - perhaps primarily - through the variations in the syntacticparameters which appear when the complex is looked at from thepoints of view of its various constituent spaces. We may define aspace syntactically in terms of how the complex is seen syntacti-cally from that space. The richness in this differentiation is themeans by which interior structures carry more social informationthan exterior relations. An alpha or settlement system is characte-

rised by the general syntactic homogeneity of the bulk of itsprimary cells, a gamma or interior system by the absence of suchhomogeneity. For this reason labels are more significant in gam-ma. If a genotyp e in alph a can be defined in terms of param etrisedsyntactic generators governing encounter probabilities, a geno-type in gamma can be defined in terms of associations betweenlabels of spaces an d differentiations in how those spaces relate tothe com plex as a wh ole, in terms of the syntactic d imensions. Asin alpha, genotypes will be the result of relations of inhabitantswith inhabitants and inhabitants with visitors, but the morecontrolled interfaces of gamma will articulate differences and

similar ities in forms of social solidarity with greater precision andgreater differentiation than in alpha. In the sense that all build-

Page 169: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 169/296

Page 170: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 170/296

156 The social logic of space

Fig. 98 A typical Englishcottage as built in the

nineteenth century (Fig.98(a)) and as recentlyconverted (Fig. 98(bJ). P =  0.444

K   = 0.355

L  = 0.288

* = 0.311

B B

(b )

As originally built

P   = 0.305

K = 0.277

L  = 0 . X 3 8*  = 0.361

B Ba

B

B

As converted

transformed house are substantially lower in the traditionalhouse, but there is one value which increases from old to new,and that is the carrier. Not only is there an increase in absoluteterms,  but compared to other RA values in old and new, the

carrier moves from lowest equivalent in the old to highestequivalent in the new. The change is therefore m uch m ore marked

Page 171: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 171/296

Buildings and their genotypes 157

17th century English house in Banbury region

RA

P  = 0 .667K  = 0.333L  = 0 .1 67* = 0.333

1930's spec, built house in London(Ground floor only)

Rear

garden

RAP   = 0.476K  = 0.333L  = 0.238* = 0.476

Converted flat in Islington, London

19th Century terraced house in London(Lower two storeys only)

Rear

garden

L

Rear

garden

"1

i;

.LL

3round fl.Original Plan Conversion

Post Second World W ar public authority housein north of England (Ground floor only)

Rear

garden

RAP  = 0.523K = 0.429L  = 0.333* = 0.523

Converted house in Camden Town , London

Second

Ground

Front

garden

Fig. 99 Six English housesof different periods andsectors of the market, withdifferent b uilding forms,but all preserving the order

of integration values for themain use spaces of P (bestroom), K (kitchen) and L(main living space).

the n m ight at first appe ar, w hen all the spatial relations of the two

complexes are taken into account. Slightly surprisingly, perhaps,the in terior of the ho use is more segregated from its exterior in thetransformed version. The garden, on the other hand, goes theother way: the new house is much more integrated with its gardentha n the old . Only the bedroo ms - again in spite of a major ch angeon the ringiness dimension for one of them - retain their RAvalues more or less comparably to other spaces in the changesfrom old to new. Finally, in both cases the lavatory, in one casesituated in the yard and in the other in the bathroom, has highest,or highest equivalent RA of all.

On the ringiness dimension the transformations from old to

new are no less striking. Overall, the mean relative ringiness ofspaces in the new is two-and-a-half times that of the old. But this

Page 172: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 172/296

158  The social logic of space

increase in quantity is not the only point of interest. The form ofringiness is if anything more significant. In the old house there isonly one ring, and that is not internal to the house but passesthrough the carrier. The 'living room' or everyday space, is at thedeepest point of this ring with respect to the carrier. The ring thatthe everyday space lies on is therefore only a ring with respect tothe relation between the interior and exterior. Moreover, since theeveryday space is at the deepest point on this ring with respect tothe carrier, it can be seen as the most important space inmediating the relationship of the domestic interior to the outsideworld. In the transformed house, all the new rings that are addedare interior rings. The everyday space, marked L, is now the hubof a set of interna l rings and one carrier ring. The everyday controldue to this space passes, as it were, from the interior-exterior

relation to a much stronger interior emphasis. This shift will beconfirmed by observation of everday use. In the new house, thedifference between front and back door ceases to be a fact ofcultura l and practical imp ortance in spatialising different k inds ofrelationships. In all likelihood the back door ceases to be func-tional, and all access is controlled through the front door. At thesame time, the front door will be more strongly controlled, againreflecting the shift in the controlling ring space inside from aninterior-exterior orientation to a purely interior one.

To account for the social significance of these spatial changes,we must refer back to the abstract model of a building as someparametrisation of syntactic variables to articulate relationsamong inha bitants, and between inhabitants and visitors, in termsof - possibly different - forms of social solidarity. In the case ofthe household, the relations of inhabitants are, of course, simplythe basic family relationships between men and women andparents and children, and visitors are simply those who, either asfriends or relations or in some more formal capacity, might havereason to cross the thre sho ld. It ought to be possible to move froma superficial description of how these relations are mapped intothe spatial structure of the household to a theoretical description

by transcribing these relations into the abstract structure of themodel of a building.

An initial point immediately suggests  itself.  It has often beenobserved that a standard feature of English domestic space in therecent p ast, at least for certain sections of the popu lation, has beena space with a rather puzz ling comb ination of prop erties: the frontparlour.

2 3  The space is the best room in the house in the sense

that it contains the best furniture and effects; on the other hand, itis used only rarely, perhaps on Sundays, perhaps only on formaland ceremonial occasions. Moreover, although the space containsthe best that the household has to offer, and is also at the front of

the house, it is invariably concealed from the outside by curtains,lace and otherwise, and ornaments that prevent the passer by from

Page 173: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 173/296

Buildings and their genotype s 159

seeing in. Syntactically, it can also be that this space has pro-nou nce d features dis tinguish ing it from th e ground-floor space s: ithas the highest relative asymmetry; and it is the only major spaceon the ground floor that is not on a ring - that is, it is a

nondistributed space. Both these properties can immediately bereferred to the concept of a transpatial solidarity, that is, a form ofsolidarity realised through the control of categories in isolation,rather than the interpenetration of categories by spatial contiguityand random movement. The front parlour is, quite simply, atranspatial space. As such, it must be insulated from its immedi-ate surrou ndin gs a nd from everyday transac tions. Its function is toarticulate re lations across greater distances , both spatial and social,and to achieve this it mu st be unlink ed as far as possible from thesurrounding spatial system. The syntactic values of the space

express this requirement.In complete contrast to the front parlour, the living room, the

theatre of everyday life and interaction, has the contrary syntacticprop erties: it is on a ring, and it has the lowest relative asym metryof any ground-floor space - that is, it is the most integrated withthe rest of the ho use hold . It is also the most powerful space in thatit occupies the central position on the ring when seen from thecarrier. Syn tactically, it is a kind of centre to the hou seho ld. M ostroutes from one space to another in the system as a whole,including the carrier, will pass through the living room. Itstheoretica l n atur e is as simple an d as basic as that of the parlour: it

is the key locus of  spatial  solidarity, as opposed to transpatialsolidarity. It is the space to which all members of the householdhave equal access and in which they have equal rights. But it isalso a space in which local interaction dependent on spatialproximity - relations with neighbours and locally based kin -normally takes place. In its more developed forms some neigh-bours will even have rights of access to this space.

The th ird major ground-floor space, the kitchen, has a combina-tion of the properties of the other two. It has a higher relativeasymmetry, but it is also on a ring. The explanation of both is

simple and inter-related. The high relative asymmetry of thekitchen articulates a categoric segregation, that between men andwomen; while the fact that the kitchen is interposed between thecarrier and the Jocus of spatial solidarity articulates the substan-tially greater dependence of that spatial solidarity on relationsamon g wo me n. Th us the relations of this space articulate in a verystrong way the domination of everyday transactions in the house-hold by wom en. Th e hous ehold is a 'sociogram' not of a family b utof something much more: of a social system.

Finally, the spatial organisation of the upper floor is muchsimpler: bedrooms are simply separate spaces off a common hall.

This nondistributed form has in fact one important property: itmaximises the relative asymmetry of all the spaces (except the

Page 174: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 174/296

160  The social logic of space

hall) with respect to each other, and thus achieves the maximumsegregation effect with the fewest number of spaces. This max-imum segregation principle is, of course, an articulation of themost fun dam ental social rule of all: the incest taboo. For sleepingpurposes, members of the same household must be as stronglysegregated from each other as possible.

How then is the transformation to be accounted for? That is,how can it be theoretically described in terms of shifts in theabstract model? One important aspect of the old genotype thatsurvives, of course, is the order of relative asymmetry values forthe major spaces on the ground floor. The best space still has thehighest asymmetry, the most used space the lowest, and thekitchen lies in between. However, these categories of use aremuch weaker than they were. Everyday life spills into the best

space, and ceremonial visitors equally use the everyday space. Itis this weakening of categoric distinctions that is reflected in theconsiderable overall reduction of relative asymmetry values forthese spaces. The merging of use and the reduction of the degreeof segregation are parallel phenomena. The one is the means bywhich the other is defined. The reduction of relative asymmetryvalues reflects a general law that associates strong categoricspaces with high relative asymmetry, a law that depends on thesimple proposition that the maintenance of a strong categorydepends on a spatial event: the relative segregation of thatcategory from the less controlled encounters of everyday life.

But there is one ground-floor space that actually increases itsrelative asymmetry in the transformed house, and that is thecarrier. The segregative focus is, as it were, shifted from theinterior spaces to the relations between interior and exterior, thatis ,  to the boundary  itself.  Again this spatial change is associatedwith a behavioural one. In the old house, the front door mightoften be left open for a while, even for quite prolonged periods,and free intera ction c ould be expected to take place in the vicinityof the door. In the transformed house this is much less likely. Ingeneral the door, with its quasi-traditional furniture carefully

burnished, will be firmly shut and hardly ever left casually ajar.Yet, in apparent contradiction, the front window, previous care-fully curtained at all times, offers no impediment to the passingobserver. On the contrary, the interior of the dwelling is boldlymanifested to the outside world, especially after dark, so that astreet of such transformed houses appears to the casual passer-byalmost as a carefully contrived exhibition of interiors.

The reason for this radical change, and for its apparent contra-diction, is of course that a change in the solidarity principles hastaken place, with a reshuffling of what is meant by an inhabitantand a visitor. The underlying organising principle of the tradition-

al interior was that of a spatial solidarity which, under controlledconditions, penetrated the boundary and related the interior of

Page 175: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 175/296

Building s an d their genotypes 161

the house to its exterior relations. The transpatial space was theobverse side of this principle: it was necessary to deal withrelations that were too problematical to be easily accommodatedin everday living patterns, especially relations involving ceremo-nial transitions or class relations. In the transformed house theprinciples are reversed. The fundamental organising principle isthat of a transpatial solidarity. The inhabitants do not relate totheir proximate neighbours in a spatial, relatively informal way.Their social networks are much more selective, built up at adistance, and require the much stronger control of the boundary toeliminate the contingent and the spatial. If the traditional interiortherefore articulated two kinds of solidarity, the spatial andtrans patial - and this wa s what led to the strong differentiation ofspace in terms of relative asymmetry - the transformed interior

articulates only one form: the transpatial form. The spatial rela-tions to the pro xim ate external area have been eliminated from theinternal ones by the newly strong boundary. And just as thespatiality of the traditional model on the internal-extern al dimen-sion was counterbalanced by the strongly asymmetric and con-trolled transpatial space, so the interior-exterior transpatiality ofthe transformed model is counterbalanced by the ringy and lessasymetric relations of the new domestic interior. It is that thepassing o bserver sees: an inaccessible s patiality, manifested to theworld as a symbol and yet absolutely unlinked to those whomerely pass by in spatial proximity. It is because interior-exterior

relations are so despatialised that the interior can be manifested.The inhabitant has nothing to do with those who only in arelation of spatial prox imity to him. It is in this disjunction of thespatial and transpatial that these apparently contradictory princi-ples of behaviour have their origin.

The essentially transpatial nature of the transformed systemthus finds its expression at the boundary, rather than in theinterior relations. These can be far freer because there is only oneform of solidar ity to articula te: the solidarity of a transpa tial classrealised spatially. The interior space develops as a system orien-

tated towards syntax rather than semantics: that is, the emphasisis on building complex patterns of relations between spaces thatin themselves represent only weak categories of use. The associ-ated behavioural code emphasises exactly this more developedconnectivity. Visitors, usually dinner guests, are moved from onespace to another during the course of their entertainment, andoften as a result experience much of the interior as a series ofconnected spaces. In contrast, in the old code visitors of whateverkind were strongly confined to a particular part of the interior.The difference between the two interiors (though not the wholecode) reflects with some precision what Bernstein has characte-

rised as the difference between a personal and a positionalsystem.

4  A positional system deals with the control of categories,

Page 176: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 176/296

162  The social logic of space

that is, of people considered as categories; a personal systemconsiders them as persons. In the language of the present model,positions are transpatial, while persons are spatial. The increasein the ringiness of the interior, which increases the potentialcontrolling influences which spaces can have on each other, andsome more than others, articulates precisely this change to asystem based on persons as spatial entities: the syntactic trans-formation literally exp ands the scope of persons to act and controlthe system at the expense of the relative protection afforded bycategories and their more controlled, rather than controlling,spaces.

In contrast to both of these cases, the classic suburban dom esticspace organisation takes features of both and assembles them inthe image of yet another form of social solidarity. In the suburban

house, the segregation of interior and exterior is even stronger,usually mediated by a front garden which, like the traditionalparlour, is carefully maintained but never used by people; andbehind this protective belt the space organisation is even moreuniformly categoric and controlled than in the traditional model.The downstairs interior approximates a simple tree form, gov-erned by a hall. The tree form maximises the asymmetry and thecontrol of the principal spaces, while the space that segregatesand controls them, the hall, is yet another instance of a ritualised,unused space. The non-use of the least asymmetric and mostcontrolling space by persons perfectly illustrates the non-person-

al,  but highly positional nature of the suburban system. Theorientation of the domestic space and its life towards a ritualisa-tion of everyday existence finds its perfect spatial expression inthese subtly different spatial relations.

By contrasting all three types of dom estic space in terms of theirsolidarity principles, a deeper analysis of their social nature ispos sible . All are in effect th e spatial forms of a class society, w hereeach form of domestic space organisation has to deal both withrelations within and between classes. The front parlour itself ischaracteristic of 'respectable' working-class life, that is, of those

who invest in the control and articulation of relations across theclass divide within their own homes. The transpatial space is atroot a means of dealing with relations across classes, whilemaintaining the principles of a spatial solidarity that are charac-teristic of working-class living patterns more or less everywhere.The suburban interior is the domestic space of the upwardlymo bile aspirer, wh o invests both living space and everyday life incrossing the class divide. It is a spatial order dedicated to theprom otion of one form of solidarity at the expe nse of another -hence its maximal orientation towards both control and strongcategories. The transformed urban interior is the spatial organisa-

tion of an achiever, one who has crossed the class divide and whouses space to express his membership of, not aspirations towards

Page 177: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 177/296

Buildings and their genotypes 163

an ascendent class in our society: the class of those people whoearn their living by the transformation - as opposed to the merereproduction - of symbols, such as writers, designers, andacademics.

All three reflect the fundamental proposition that spatial orderis a function of social solidarity. All three also reflect a certainunderlying lawfulness in the ways in which differential solidar-ities turn themselves into spatial forms and rules: that categoricdifferences within classes (including differential solidarities) arerealised through variations in relative asymmetry; while relationsacross classes are realised in variation in relative ringiness, that is,in the form of control. The space of the new middle-classdomestic interior is ringy and relatively low on asymmetrybecause it is the space of a single class, protected by a highly

selective boundary, and of a single solidarity, that is, of commonpatterns of solidarity among men, women and children.

Tw o large com plexe s from the ethnographic record

Thus the sociological character of variations in domestic spaceorganisation in different sub-cultures of English society can begiven a precise structural and numerical form through the agencyof the abstract model of a building - but only because theexamples are small scale and a good deal of data on the use ofspace is easily available. The larger buildings become, and the

more removed from intuitive experience, the more hazardousbecomes the use of the abstract model to try to construct asociological picture of a particular type of building. Fortunately,gamma-analysis provides us also with a means of slowing downthe argument and exploring the syntactic organisation of a morecom plex bu ildin g throug h a stage by stage proce dure, wh ich, at itsbest, will reveal a series of clues leading at least to informedconjectures as to the sociology of their spatial structure.

Take, for example, 'premises' (if that is the right term) like the'Kuanyama' kraal of the Ambo tribe drawn by Walton, after Loeb,

in his study  African  Village (Fig. 100),5

  whose justified gammamap (treating each segment of the rather extraordinary 'passages'as a dot, following the domestic space convention, and allowingno segment of space to be larger than its axiality, following thealpha convention) is as in Fig. 101.

The visual transformation from the plan to the gamma mapimmediately makes two points obvious. First, the deepest spacefrom th e carrier - a non distrib uted space - is that of the head m anof the kraal; second, the deepest distributed space is the meetingplace . In other w ord s, from the po int of view of the world outsidethe deepest space is that of the chief inhabitant, while the prin-

cipal space on the deepest ring is that of the principal inhabitant-visitor interface. Reversing the system and looking at the com plex

Page 178: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 178/296

164

Fig. 100 'Chiefly'kraal ofthe Ambo peop le, after

Walton.Cattle entrances

Kuanyama Kraal • * ^ v E ntra nc e

Stamping^ space

ground \

^  ^s  Main

\entrance

o

from the point of view of these two spaces, similar propertieshold: the kraal head's space has the highest relative asymmetry ofany space in the complex (0.262) by a substantial margin; whilethe meeting place has the lowest, (0.093) again by a substantialmargin, the former being nearly three times the latter. In otherw ord s, looking at the relations of inhabitants to each other, similarproperties hold: the kraal head's space is the most segregated;while the meeting place is the most integrated.

The principal internal relations mapped into the structure are

the most basic: those between the sexes, and those between agegrou ps. In all these relations both the de pth meas ures (i.e. relativeasymmetry from the carrier) of the spaces and their relativeasymmetries are informative. For example, all the wives' quarters(with the exc eption of the first wife's bed room , wh ich is located inthe meeting place) have relative asymmetry well above theaverage for the complex, though well below that of the sub-complex belonging to the head man. At the same time the boys'quarters not only have a lower asymmetry, but they are alsolocated in a shallower position in the complex than either thewives or the headman. There is also a difference on the ringy

dimension, in that the space governing the boy's hut is on ashallow ring, whereas the spaces governing the wom en's hu ts are

Page 179: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 179/296

Buildings and  their genotypes 165

Fig. 101 Justifiedpermeability map of Fig.100.

7

9

283340

44

52

55

5761

6 0

73

75

other wivesmeeting place

girl visitors

kraal head

brewery

first wife

main entrance passage

entrance space

boys sleepingox kraal

cow kraal

second wife

passages

carrier

in all cases them selves no ndistributed. T he headman himself hastwo princ ipal spaces: his own quarters and the m eeting place. Theformer is the least ringy space in the complex, the latter the most,being the only space that lies on two rings.

An abstract statement of these relations can perhaps clarifytheir underlying genotype. Since in general relative asymmetry isassociated with strong categories - that is, with the transpatial -and ringiness with control - that is, with the spatial - then it caneasily be seen that, insofar as he occupies a positional label(headman of kraal), the headman has the highest relative asym-metry realised in the most controlled space; on the other hand,insofar as he interfaces spatially with others through the meetingplace, he has the lowest relative asymmetry realised through thehighest ringiness, that is, the highest control. This is the situationwhen considering the meeting place from an internal point of

view . If we look at it from t he ca rrier, tha t is from the p oint of viewof visitors, then the meeting place is still deeper in the building

Page 180: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 180/296

166 The social logic of space

Fig. 102 Fig. 100 dividedinto its distributed ('ringy' -

Fig. 102(a)) andnondistributed (tree-like -

Fig. 102(b)} sub-system s.

than any other distributed space. From the point of view of thevisitors, therefore, the m eeting place has a high relative asymm etry.We can therefore associate the meeting place itself with a strongcategoric ordering of the relations between inhabitants and visi-tors - and this, of course, finds its expression through th e locationof the sacred fire in this space. Thus the spatial relations of themeeting place combine a high asymmetric, or meaning value onthe inhabitant-visitor dimension, with a high spatial controlvalue on the inhabitant—inhabitant dimension, that is, in therelation between the headman and the other categories of peoplein the complex. The close association of the wives' complexes, ina nondistributed relation, with the ringy complex on which themeeting place is the dominant space, articulates this control. Allroutes from wives' spaces pass through this ringy complex at a

point close to the dominant space.The relation between those parts of a building that lie on the

ring system that includes the carrier, and those that are removed

76

(a)

(b )

Page 181: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 181/296

Buildings and  their genotypes 167

from it, is one of the keys to a sociological account of spatialorganisation in buildings generally. In most, but by no means allcases,  as we shall see, the distributed system is the set of spacesthrough which the visitor, subject to more or less control, maypass;  while the nondistributed system, (that is, the set of treesconnected to each other only through the distributed system) isthe domain of the inhabitants, with stronger sanctions againstpenetration by the visitor. Fig. 102(a)-(b) divides the Ambo kraalinto its distributed and nondistributed sub-systems. As with theintroduction of the gamma map  itself,  this transforation has theimmediate advantage of visually clarifying several of the spatialrelations that have been described and expressed numerically, inthe sense that the meeting place is at the apex of the distributedsystem, the kraal head at the apex of the deepest nondistributed

complex, and the relation between them is that of the formergoverned by the latter from the point of view of the carrier.

The structure is made very much clearer if we contrast theAm bo kraal with ano ther 'chiefly' b uilding from Africa: one of the'palaces' of the Ashanti chiefs, as illustrated and described byRattray.

6 Fig. 103 shows the layout given in Rattray, while Fig. 104

shows the full justified gamma map, and Fig. 105 and 106 thedivision into distributed and nondistributed systems. Visually,the difference is immediately obvious. While both buildings havea similar number of spaces, the Ambo kraal has a far moreelaborate non distributed structure than the Ashanti palace, and a

far simpler distributed structure. More precisely, the Ambo kraalhas more asymmetry in its nondistributed structure, while theAshanti palace has more ringiness in its distributed structure.Counterbalancing this, the Ambo kraal has more asymmetry in itsdistributed structure and the Ashanti palace more symmetry in itsnondistributed structure. Overall, the Ambo kraal is two-and-a-half times as asymmetric as the Ashanti palace, while the Ashantipalace is three times as ringy as the Ambo kraal.

In terms of individual spaces and their use labels, the compari-son is no less striking. The Ashanti palace, for example, has no

single deepest (nondistributed) space, although the place wherethe chief s leeps , space 3 3, is one of the spaces at the deepest level,and the only one that is a single space governed by a courtyard.Taking the complex as a whole, therefore, depth from the carrierdoes not distinguish any space or set of spaces very strongly, incomplete contrast to the Ambo kraal. In terms of the distributedspaces, the contrast is more intriguing. In the Ambo kraal, theprincipal space for interfacing inhabitants and visitors was thedeepest distributed space, whereas in the Ashanti palace it is atthe shallowest level (space 2). However, in spite of the differencein depth from the carrier, in both buildings the main interface

space has the property of having the lowest relative asymmetry ofany spac e in the build ing - 0.041 in the Ashan ti case, 0.093 in the

Page 182: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 182/296

168 The social logic of space

Fig. 103 Ashan ti 'palace',

after Rattray. ULJLJ LJUULJU,

L-

r

58

LLLP4 0

47

• I P - jt

t

22 21  19

1 1 D13

36

27

U 34 i33

.:  L|

  HJ_JL

32

58 ri_

r r

I

L7

r

_

rPlan of

Omanhene's

1

an

'Palace'

36 the big sleeping place—the chief

sleeps in a room off.

40 the yard behind the sleeping

quarters.

47 the yard leading to the lavatory in

which rations are issued and sheep

slaughtered.

51 court in which the chief and his

elders discuss in priva te.

58 'street' of the wom en.

2 Whe re the chief presides over

important cases and holds big

receptions.

7 cou rt of restricted access in whic h

internal disputes are heard.

13 court known as the approach to the

big mausoleum.

19 court of the mausoleum.

27 cou rt in wh ich lesser ord inary cases

are heard.

32 an open space where small boys

attending the chief's wives play.

34 wh ere any subject or stranger may

come for hospitality at the chief's

expense.

Ambo case. If we the n contrast th e location of the most sacredobject  the sacred fire in the case of the Ambo, the 'blackened

stools' in the mausoleum in the case of the Ashanti  in the Ambocase  it is  found  in the mee ting place, that  is in  the deepestdistributed space with the lowest relative asymmetry, whereas inthe As han ti case it is to be found in a non distribu ted sub-com plex,in a space w ith the highe st relative asymme try in the complex spa ce 22 (RA = 0.99).

The spatial relations between men and women are even moreradically different.  In the Ashanti case, not only are womenlocated in the shallow est spaces in the co mp lex, but also their'street' (as Rattray calls the elongated courtyard com plex o ccupiedby the women) has the highest ringiness value of any space in the

building, some of it stemming from the high degree of connectiv-ity to the carrier, but due also to the connections to what would

Page 183: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 183/296

Buildings and th eir genotypes 169

otherwise be relatively deep and segregated spaces dominated bythe chief.  The spatial shallowness of women goes beyond that oftheir living quarters. The room of the 'ghost wives' is the onlyno ndis tribu ted cell directly perme able to the carrier. It is thereforethe shallowest nondistributed space - in spite of which it also hasa high relative asymmetry, meaning that it is strongly segregatedfrom the remainder of the complex.

Rather more obviously, the buildings can be contrasted in termsof the nature of the spaces, as well as in terms of their relations.For example, in the Ambo kraal, most of the spaces in the

Fig. 104 Justifiedpermeability map of Fig.103.

Fig. 105 Distributed('ringy') sub-system of Fig.104.

Fig. 106 Nondistributed(tree-like) sub-system ofFig. 104.

Page 184: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 184/296

170  The social logic of space

distributed system are called passages: that is, they have thelowest convex synchrony (i.e. are narrowest). In the Ashantipalace, the opposite is the case. The distributed spaces are for themost part those with most convex synchrony (i.e. the fattest). In

other w ord s, space is invested in the distributed system, not in thenondistributed system, as is the case with the Ambo kraal. Thereare also differences between spaces in the distributed system inthe Ashanti case. For example, the lowest convex synchronyspace - that of the women's street - is also the largest in terms ofarea, and has the highest description, in the sense of relationssynchronised by the space - in this case the individual dwellingsof the women. In contrast, the space with most convex synchronyis space 32 , wh ich is only described as a place for boys to play in.However, this space alone among the distributed courtyards has

no primary cells constituting it. The high synchrony thereforesynchronises no important local descriptions. As soon as thesynchronisation of local descriptions is taken into account, thehighest synchrony is found, as with the Ambo case, in theprincipal interface space, the entrance court, or space 2. In bothcases,  therefore, in spite of their different locations, space isinvested where most emphasis on manifest symbolic meaning isrequired.

In order to interpret the Ashanti palace in terms of the abstractmodel of a building - that is, in terms of relations of differentialsolidarity among inhabitants and between inhabitants and visi-

tors, we m ust take accoun t of one further impo rtant fact about thebuildings: that two of the entrances (those marked 63 and 64 byRattray) are described as 'private ways'. This means at least thatthese routes are open to inhabitants and not to visitors, andpossibly also they are open to some inhabitants but not to others.Rattray is unfortunately not explicit on this latter point. But evenwith what we do know, we can redraw the gamma map of thebuilding with and without these private ways. Since the effect ofthese is on the distributed courtyards, we will also eliminate allprimary cells from the map. This will have the effect of clarifying

the relations of spaces in the distributed system, whic h have so farbeen somewhat obscured by the numerical and visual effects ofthe presence of so many primary cells. Fig. 107(a) shows thejustified gamma map of the distributed courtyards without thesecret ways, Fig. 107(b) shows it with them. The principalmeasures are tabulated below, with RA values translated to 'realRA' values to allow for size differences. The most obvious changethat results from the addition of the private ways is that therelative asymmetry of the complex from the carrier reduces toabout  half.  This means, simply enough, that the building has ahigher relative asymmetry from the point of view of visitors than

it does from the point of view of inhabitants. This is graphicallyshown by the continuous increase in the number of spaces at each

Page 185: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 185/296

Buildings and their genotypes 171

58

(a) (b )

(C)

Changes  in  syntactic  values resulting  from  the  transformation  of RA

values  to 'real RA vaJues.

e2

5 8

1 9

4 0

2 1

3 2

5 1

3 6

4 7

3 4

RA

0.305

0.222

0.222

0.194

0.222

0.194

0.194

0.222

0.277

0.222

RRA

1.003

0.729

0.729

0.638

0.727

0.638

0.638

0.729

0.911

0.727

RR

0.251

0.251

0.297

0.251

0.218

0.272

0.251

0.218

0.204

0.204

RA

0.178

0.155

0.200

0.266

0.133

0.200

0.178

0.200

0.200

0.244

0.222

RRA

0.605

0.529

0.680

0.907

0.453

0.680

0.605

0.680

0.680

0.831

0.756

RR

0.340

0.318

0.318

0.251

0.298

0.265

0.298

0.251

0.251

0.227

0.227

level  of  depth  in the  complex, ending with  no  less than fourspaces  -  nearly half  of  those available  - at the  deepest level.  Of

these four spaces, one (space 47) has a  markedly higher relativeasymm etry with respect to the rest of the complex -  that is, on theinhabitant-inhabitant dimension -  than  the  others: this  is the

space  in  which sheep  are  slaughtered  and  which leads  to the

lavatory. This seems  to  indicate that  on  internal relations asym-metry is invested  in  the space housing the most earthy and bodily

of functions.When  the  private ways  are  added, however,  a  number  of

interestin g effects a ppea r. First, the space w ith the highest relativeasymmetry  in the  distributed system  is now the  most sacredspace: namely  the courtyard containing  the  mausoleum with the

blackened stools, that  is, the ance ntral, m ost transpatial objects.Second, from the point of view of the carrier, two spaces have nowbecome joint deepest spaces, both spaces with conspicuousfunctions  in  terms  of the  general model. Space 34 is the  placewhere  the chief mu st en tertain  any subject  or  stranger, implyingthat the space is  concerned with the realisation of relations across

space rather than with local relations. Space 51 is the space wherethe chief and his elders confer  in private: that is, it is the space in

Fig. 107 Justifiedpermeability maps of thecourtyard structure of Fig.103 withou t (107(a)) andwith (107(b)) the 'private

ways'. 107(c) showschanges in syntactic valuesresulting from thetransformation.

Page 186: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 186/296

172 The social logic of space

which is realised locally the most political function, meaning by'political' that it is concerned more with open ended negotiationsthan with the closed and predetermined ritual. Third, these lastnam ed spac es, 34 and 51 , are the only ones that actually increasetheir relative asymmetry when the private ways are added, even ifonly by a relatively small margin in both cases. Finally, space 40becomes the space with the lowest real relative asymmetry of all.This seems odd at first, since the space is the only one thatapp ears to have no particular function, being only the yard be hindthe sleeping q uarters . How ever, exam ination of some of the roomsadjoining the courtyard suggests an answer. Space 40 turns out tobe the place where the chief goes when he wants to be alone. Inother words, in his private capacity, as opposed to his publicfunction, the chief goes to occupy the most strategic space in the

building.How can this rather strange collage of facts be assembled into a

coherent picture? The best approach is through a proper com pari-son between the distributed system of the Ashanti palace and thatof the Ambo kraal, and then between their nondistributed sys-tems.  It has already been noted that the Ambo kraal has moremean relative asymmetry than the Ashanti palace. Calculated bythe 'real

7 formula, it can be seen to have twice as mu ch: an average

of 1.237 as opposed to 0.673. But in spite of this, the Ashantipalace has much more  differentiation  of distributed spaces interms of their real relative asymmetry values. It has a relatively

larger range and a good spread through the range: whereas theAmbo kraal has a smaller range with no less than seven spacessharing the same value and the remainder being more or less threepairs of duplicates. As far as the nondistributed system is con-cern ed, th e figures are the other w ay roun d. T he RA values for thenondistributed sub-complexes are far less differentiated in theAshani palace than in the Ambo kraal. There are two spaces witha very high real relative asymmetry value in terms of theirsub-complex: the two deepest spaces in the mausoleum, whichhav e a real valu e of just over 2 - a very high valu e for the system ,

indica ting a very strong category. But for the most part, n ond istri-buted spaces are only one deep from the distributed system.Moreover, most of the nondistributed spaces have low synchronycompared to the distributed spaces, just as with the Ambo thedistributed spaces, with one strong exception - the meeting place- have low synchrony in comparison with the nondistributedspaces. All these facts seem to point the same way: the Ashantipalace invests spatial structuring in the distributed system, that is,in the relations between inhabitants and visitors, while the Ambokraal invests spatial structure in the relations among inhabitants.

Investigation of the use labels of the distributed spaces in the

Ashanti palace confirms this orientation. Space 2 is the spacewh ere major cases are heard; space 27 has lesser cases; space 34 is

Page 187: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 187/296

Buildings and their genotypes 173

where the chief entertains strangers; space 51 is where the chiefand his elders (from other parts of the settlement) meet anddiscu ss; space 19 is the se tting for major religious functions. Eventhe distributed spaces that do not have a conspicuous inhabitant-

visitor function suggest this relation in a more informal way. Thewomen's court, space 58 for example, with its three direct ways tothe carrier, space 32 where the sons of visitors play, and the courtwhere the chief eats alone, space 40, with its private way direct tothe outside all seem, in one way or another, to emphasise therelation w ith the outside w orld rather than the internal structure ofthe complex. Only the places for sleeping and bodily functions,spaces 36 and 47, seem to be exceptions to this general rule.

In the Ambo kraal, the inhabitant-visitor relation seemscollapsed into one space in the distributed system, the meeting

place, and apart from that, into the most asymmetric complex ofthe nondistributed system - the spaces for women and girl visitorsare to be found deep in the kraal head's sub-complex. One moregeneralisation is thus possible. Because nondistributed com-plexes form a discrete system, it can be said that in the Ashantipalace the inhab itant-vis itor relations are both complex and forma contin uou s system wh ile in the Ambo kraal, the spaces formingthe relation are a discontinuous system. In the Ashanti case,therefore, the inhabitant-visitor relation is in the spatial dimen-sion, while the Ambo kraal it is primarily in the transpatialdimension.

Another component of the underlying genotypes of the build-ings is brought to light by a more careful examination of therelative ringiness of points in the distributed courtyards. In theprivate ways version of the Ashanti distributed sub-complexes,the highest internal ringiness values belong to space 2, theprincipal interface space between the chief and outsiders, andspace 58, the women's street. But without the private ways, thehighest value belongs to space 58 alone. The private waystherefore balance relations between the sexes on the ringinessdimension. But even with the private ways added the values,

although equal, are not equivalent. The ringiness of the women'sstreet is biased strongly in the direction of the carrier, not in thedirection of the building. The principle is clear. The chief malehas the highest ringiness when considered from the point of viewof the internal structure of the building; but the women have thehighest when considered from the point of view of the re-lations between the inside of the buildings and the outside. Themen and the women point, as it were, in different directions - thewomen in the direction of the outside, and therefore of spatialrelations; and the men in the direction of the inside, and thereforeof transpatial relations. It appears then that differential solidar-

ities between men and women are inscribed in the ringinessstructure of the building, and are not, as in the case of the Ambo

Page 188: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 188/296

Page 189: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 189/296

Building s and their genotypes 175

also. The o rientation tow ards one form of solidarity or the other isnot uniform. Each uses the other in effect to articulate internalrelations among inhabitants. Thus the Ashanti palace investsmore transpatial structure in males and more spatial structure in

females, but taken as a whole the building has far less asymmetryand far less nondistributedness that the Ambo kraal, which in itsturn invests more symmetry in females than in males, but never-theless remains a system predominantly orientated to the value ofasymmetry.

The correlates of this genotypical divergence in social structureand overall settlement morphology are not hard to find. TheAshanti live in relative dense, semi-urbanised settlements, andhave traditionally a social structure in which both residence anddescent pass through the female rather than the male line. Often

this entails husbands and wives not cohabiting, but remainingwithin the household of their matrilineal group, with husbandsvisiting wives and wives sending food across to husbands. Thistype of social arrangement clearly requires a locally dense settle-ment form, and also generates an orientation to the exteriorrelation of the boundary as much as to the interior relations. Theuse of the space outside and between houses for everydayactivities is indeed a common feature of Ashanti village life. Thenotion of a system o rientated tow ards a spatial solidarity has rootsin these social mo rpholog ical tre nd s. The Ambo, by contrast, are asociety in which residence passes through the male line: women

move away from their maternal family on marriage and areexpected to have unequivocal loyalty to the household dominatedby their husbands. From the settlement point of view, the Ambolive in relatively dispersed conditions - conditions that facilitatethe maintenance of a system orientated towards the control ofsociety through the boundary rather than through interior-ex-terior relations. The power of these principles of social solidarityto imprint themselves on the spatial structure of the society isshow n w ith great emp hasis by the way in which generic tradition-al social relations still pervade these two elaborate buildings of

the embryonic * state ' .

Page 190: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 190/296

Page 191: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 191/296

Elementary building and  its transformations 177

permeability is sealed. The whole structure as it were becomes theclosed cell alone. During the day the opposite occurs. Thedisp ositio n of goods in the open cell and the op ening of the closedcell implies that as far as possible the whole structure becomes

the open cell alone. The elementary structure appears not becauseof an inherited traditio n, but because of structural n ecessity: a shophas a very definite spatial mo del. It mu st max imise the probabilityof random visitors at its interface and minimise the controls overthem as far as is consistent with the control of the removal of itsgoods. The structural isom orphism of the shop with, for example,certain simple house types in various societies, is a result not ofcultural diffusion of an artefact, but of the internal structuralnecessities of an abstract model realising itself in physical form.Wherever the logic of circumstances dictates the maximising of

random encounters without losing a minimal spatial control, thiselementary structure will be regenerated.

The evo lution of this elem entary bu ilding in different directionsfollowing the internal logic of social solidarities can be brieflysketched by considering some of the buildings which, on thesurface, appear to be among the simplest on earth: the tent and hutdwellings of nomads. Take, for example, a Bedouin tent asillustrated by Torvald Faegre.

1 Fig. 110 shows a basic structure to

which key details must be added - all mentioned in Faegre's textbut not ind icated in his plan - if the genotype is to be und erstoo d.

Water bags

-Brush

Fig. 110 Bedou in tent, afterFaegre.

I Prayer space

Page 192: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 192/296

178

Fig.  I l l A Tuareg tent, afterFaegre.

Water bag

f I  •

{ Water

•   ToSaddle bags /hung on wall

  B o w l

fHorn

  VB

O   O  w

't n  DU

tter

\Quern \Mil letmortar

The social logic of sp ce

^Leather wal l hanging

0

—Provisions

—Butter

— Churn

ed on stakes

First, the host's camel saddle is set on the mattress in the deepestpart of the me n's s ide, and the host and 'guest of hono ur' sit either

side and talk across it. Second, the space outside has a markindicating that it is a place for prayer, and this implies of coursethat it is a male-dominated space. Third, although the rules forhos pitality are extremely strong - a Bedou in must give three da ys'hospitality even to his enemies - there is a strong prohibition onguests seeing into the women's side of the tent. With these extradetails the abstract model of the system is extremely clear. Theinhab itant-visitor relation is realised on the depth dimension -that is, asymmetry from the carrier - in that the guest-host pairoccupy the deepest space; while the inhabitant-inhabitant rela-tion - that between men and women - is realised on the relative

asymmetry dimension, first in that the boundary strongly segre-gates one from the other, and second in that the space with mini-mal relative asymmetry - the space outside - is controlled by theme n through a male orientated transpatial function - literally tran-spatial in that the prayer mats are turned in the direction of Mecca.This s pace, being the only space on a ring - the carrier - is also thestrongest point of control in the system.

If we then com pare this with a Tuareg tent (Fig. I l l , again takenfrom Faegre, but che cked with a direct informant), once the detailfrom the text is added we find a great contrast. First, the space

outside is not a transpatial space, but a space of practicalfunctions. As Faegre says, 'mats are often stretched well out infront of the tent, making an enclosure courtyard that is anextension of the space inside the tent. The hearth is set in thisspace . . . just outside the tent are placed the woo den m illet mo rtarand the stone quern for grinding grain.'

2  The functions are, of

course, more orientated to women than to men. Second, menreceive guests outside the tent, and even outside the settlement,whe re men spend mu ch of their time. The plan already shows thethird property: that the distinction between men and women isnot made inside the tent. On the contrary 'the bed is set in the

m idd le of the floor . . . in small tents it takes up most of the floorarea'.

3  In other words, both in its internal organisation and in the

Page 193: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 193/296

Elementary building and  its  transformations 179

relation of interior to exterior the system completely lacks thestrong model that existed in the Bedouin case. Women are notdivided from men inside, there is equal control of the outsidespace, and visitors are not distinguished according to differentcategories of inhabitant (that is, men and women).

To say that the system lacks structure would be an error.Properly speaking, it has the minimal structure of the elementarymodel: the interior to exterior asymmetry dimension distin-guishes only inhabitants from visitors; no internal structuredistinguishes inhabitants from each other; while the ringy space,the space outside, serves to link the inhabitant and visitor in aless controlled system. The precise theoretical nature of this typeof system, where the structure is less obvious and more probaba-listic,  is part of the subject matter of Chapter 6 (see pp. 217-22). In

the meantime, it is perhaps no surprise to learn that the Tuareghave an entirely different system of social relations between menand wo men . Not only are they matrilocal, but wom en have the high-est developed craft - the leather work that dominates the tentsdecoratively - and even, it is said, they may take initiative insexual matters. As Faegre observes, the status of the Tuaregwomen is a constant source of irritation to their Arab neighbours.This liberation is amply manifested in the virtual reversal of thespatial model of the Bedouin tent.

Moving half way across the world, the Mongolian yurt iscomparable to the Tuareg tent in its lack of internal subdivisions,yet comparable to the Bedouin tent in the development of itsinternal model (Fig. 112). Compared to the previous two, itsstructures appears almost paradoxical. In the interior, every

Fig. 112 A M ongolian yurt ,

after Faegre.

Page 194: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 194/296

Page 195: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 195/296

Elementary building and  its transformations 181

Fig. 113 An Ashantiabosom fie, or shrine, afterRutter.

Entrance

exit to ahemfie—

w hich the real relative asymm etry is 2.170. The courtyard space isat once the space of visitors, and thus a bipermeable space and atthe same time it synchronises all the significant spaces in thesystem. This dee pen ing of a single uniperm eable space - thedomain controlled by the inhabitants - coupled to a bipermeablespace, often of considerable size, for the visitors is, it would

appear, the underlying genotype for a vast family of buildings forreligious observance across many cultures and times. The Englishparish church (see Fig. 114) for example, has the same basicmodel. The pervasive tendency to axialise the relations betweendeepest space and visitor space is a direct by-product of thegenotype: a deep space must be synchronised with a large shallowspace.

Yet in spite of its frequent elaboration the genotype is a simpledevelopment of the structure of the elementary building. Theclosed cell is extended to a deeper, but still unipermeablesequence; the open cell is expanded to accommodate more

visitors; while the axiality retains the direct relation of synchro-nisa tion. Th e religious build ing as a type in effect m aximises bo th

Fig. 114 An English parishchurch, after BannisterFletcher.

Page 196: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 196/296

182 The social logic of space

components of the spatial-transpatial model underlying theelementary building: it maximises the spatial interface to amaximally transpatial space. It assembles the inhabitant in hisclosed cell and the visitors in their open cell (in the sense of being

functionally bipermeable) into a direct interface, while makingthe inhabitant as deep as possible and the visitors as numerousand synchronised as possible.

Further light can be cast on the genotype by references to aconc ept due to Victor Turner : that of com mu nitas. In his book TheRitual Process Turner proposes that there exists a state of what hecalls comm unitas  in w hich social structures are rescind ed, and allparticipants in ritual becomes identified with each other throughcommon status and community of belief.

5  The difference between

the semi-sacred interior of the yurt and the shrine might be

interpr eted in relation to this. The yurt has the basic structure of aritual sp ace, but retains th e com plex set of social differentiationsand statuses through its local spatial differentiations. A shrinedoes the opposite. It obliterates these structural differences andlocates all visitors in a single, undifferentiated space, in w hichtheir relation is made only and exactly by their synchronouspresence with the objects of the shrine in the deepest space. Thevisitor space in a shrine, both according to Turner and accordingto the logic of our model, is the space of communitas.

In terms of its abstract genotyp e, therefore, a shrine can be seenas certain syntactic and parametric transformation of the

elementary building. Other types of building can be seen asdifferent transformations, but as transformations nonetheless. Atheatre, for example, differs from the shrine in that the principalspace of the inhabitants - that is, the stage - is as shallow aspossible with respect to the space of the visitors, rather than asdee p as poss ible. Following the logic of the mod el, this im plies aninterface that is not based on a strong transpatial category,requiring a local ritual to preserve its clarity, but on a directlyspatial interface, only one step removed from physical contact. Incommon with shrine the theatre tends to develop a 'stage door'. At

first sight, this is a rather curiou s p hen om eno n, sinc e it is the m ostimportant inhabitants who use the stage door, in spite of the factthat it is nearly always a concealed, unceremonious, even furtiveentrance. The stage door is, in fact, a common feature of spatialgenotypes where the inhabitant is located in a deep space, andmust be seen to emerge from its depths rather than firm theprofane visitors' space which, to the visitors, appears to controlthe pathway to the deep space. The stage door is a pervasivefeature becau se it is a means of ma intaining an illusion. But it alsoillustrates an important principle about the spatial structure ofbuildings. The spatial genotype of inhabitant-inhabitant and

inhabitant-visitor relations to be realised in a building may not beeasily realised or easily reconciled with practical and functional

Page 197: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 197/296

Elementary building and  its transformations  183

requirements. A factory, for example, genotypically prefers thesocial segregation of workers from each other and their integrationonly through the productive process. However, the functioning ofthe productive process cannot tolerate the spatial segregation thatthe ideal genotype requires. Wherever this type of contradictionoccurs we invariably find one of two things: either we find aninconspicuous spatial strategy developed to overcome the func-tional difficulty and preserve th e genotype, as is the case with thestage door; or we find that rules are a dded to the system in order topreserv e the gen otype - in the case of the factory, rules forbiddingor hindering movement and lateral interaction of individualworkers with each other.

A building  type  may be defined in general as a characteristicgenotypical transformation of the underlying abstract model of a

building, realised in, and identifiable through, a certain arrange-ment and parametrisation of the basic syntactic dimensions. Theidentifying features of a type are discoverable in broad terms bysimply asking which of the relations of the elementary buildingare amplified or restricted, and in what ways. For example, adepartment store is a building which, while being as large aspossible, minimises the nondistributed component associatedwith the inhabitants and maximises the ringiness of the visitorspace. The control remains w ith the inhabitants - the sales people- but realised as minimally as possible in order to maximise theuseful route potential of the distributed system - the spaces

between the counters - for the visitors.A museum, on the other hand, is a building in which both the

inhabitants and their nondistributed domains have all but dis-appeared, and in their place is only the knowledge they control,interfaced everywhere with the distributed system. But thisdistributed system is not maximally ringy. On the contrary, ittends to have few asymmetric rings rather than many symmetricrings,  reflecting the high categoric investment in the displayedobjects in museums compared to those in department stores. Butin the museum a new phenomenon appears: uniformed agents of

the inhabitants - but not the inhabitants themselves (that is, thosewho control the knowledge invested in the building) deploythemselves in the distributed structure, a by-product of thetake-over of the entire building by a spatial system that permitsand even requires the visitor to penetrate everywhere in it.

Reversed buildings and others

All the buildings touched on so far have, in spite of their greatvariety in form and function, one common feature: they all havethe elementary relation between the inhabitant and visitor, in thesense that the inhabitant is in the deeper, often nondistributedparts of the building, and interfaces with the visitor through the

Page 198: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 198/296

184 The social logic of space

shallower, often distributed parts of the building that form itsprincipal circulation system. But the reader will not find itdifficult to think of instances where this elementary relation doesnot hold: hospitals, for example, or asylums, certainly prisons,

and possibly schools would be very hard to see in this way,although banks, police stations, most types of office and factory allseem to be based on this relation . A cursory review suggests that itis when buildings have what we might call a public institutionalcharacter that the elementary relation does not hold: and sincebuildings of this kind have evolved and diversified substantiallyin the past two centuries, then it becomes a key issue to examinethese kinds of building as a species, and to try to discover whythey seem to be so characteristic of society today and less so ofsocieties in the past. In what follows it will be argued that there is

a very fundamental building genotype that is characterised exact-ly by the reversal of positions of inhabitant and visitor, in thesense that the visitors - those who do not control the knowledgeembodied in the building and its purposes - come to occupy thedeeper primary, usually nondistributed cells; while inhabitants -those who do control the knowledge embodied in the buildingand its purposes - or their representatives come to occupy thedistributed circulation system. For convenience this speciescould be called the reversed building - reversed in the sense thatpatients and prisoners occup y the primary cells, while guards anddoctors occupy the distributed system and move freely in it. Such

buildings have a general sociological character, hence the com-mon theme of reversal, but at the same time the species hassignificantly different sub-varieties. These varieties need to beexamined in some detail before any useful conclusions can bedrawn about the sociological character of the reversed genotype.

The most general feature of all the buildings so far examined,apart from the elementary relation of inhabitant and visitor, haslain in the fact that the spatial struc ture of each building embo diesknowledge of social relations. It is through this embodied know-ledge that buildings act as rule systems and function to reproduce

forms of social solidarity. Another way of expressing this wouldbe to say that building s are spatially about social knowledge  — thatis , taken-for-granted know ledge of rules governing the relations ofindividuals and the relation of individuals to society. Socialknowledge is about the unconscious organising principles for thedesc ription of society. Often a building is a concretisation of theseprinciples. In fact we might say that insofar as buildings areelementary in their organisation of relations between inhabitantsand visitors, then they are expressions and realisations of theseorganising principles in a domain that is more structured than theworld outside the boundary.

But insofar as they reverse the elementary relations of inhabi-tant and visitors, buildings are about the pathology of descrip-

Page 199: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 199/296

Elementary building and its transformations 185

t ions:  that is, they are about the restoration, purification andinstillation of descriptions. The building exists not to create adomain where established relations are embodied and enacted,but in order to create a more highly controlled domain in whichthe restitution, re-creation and transmission of descriptions cantake place. In an elementary building, the function of the asym-metry available in the primary cells is to control a social categoryby defining its permissable relations. In a reversed building, thefunction of the prim ary cell is to elim inate relation s, relations thatare presumed to be dangerous and contaminating to descriptions.The primary cell thus becomes a singularity, a point withoutrelations, rather than a point defined by its relations. Likewise, inan elementary building, the function of the distributed system isto articulate the relations by which visitors have differential

access to inhabitants, thus confirming the differences betweeninhabitants; in a reversed building, the distributed system is themeans by which inhabitants have uniform access to and control ofvisitors, thus confirming their homogeneity. The essential struc-ture of the reversed building thus predicates the elimination ofsocial knowledge. Except for the interface between inhabitant andvisitor, knowledge of social relations is suspended. We are in thedomain of  reflexive  knowledge, that is, knowledge that suspendsthe enactment of its own principles in order to reconstitute them.In this domain, because the building is no longer ordered by thelocal realisation of the transpatial categories of society, the

interface becomes a  spatial interface of control.  Instead ofembodying a ritual, the building embodies a confrontation be-tween the pathology of descriptions - the sick, the indigent, thedisturbed and the uneducated - and those by virtue of whosespecial powers and knowledge descriptions can be restored.

From its inception as a building type there are two fundamentalvariants on the reversed building, the one concerned with thepathology of individuals, the other with the pathology of society.The spatial genotypes of the two are different but related. Thefirst is the infirmary, in which the disturbed descriptions of indi-

vidu als are to be restored by being brought into direct contact withand put under the control of those whose knowledge of theinterior workings of nature can restore them to their proper state.This interface must have two properties: it must be direct, withoutintermediaries or intervening spatial structures; and it must beone of control. The spatial genotype for this interface is easilyderived from that of the elementary building by way of the shrinebuilding, through which it appears to have evolved historically.Take for exa mp le the infirmary of Tonn erre at about the year 1300(Fig. 115). The m ain b ody of the buildin g is identical to the sh rine,but with certain features added. First, in the synchronised andbipermeable visitor space, subdivisions have been added withoutimpeding the axial flow of the distributed space. Second, two new

VvvvvvvvwFig. 115 The med ievalinfirmary of Tonnerre, afterThompson and Goldin.

Page 200: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 200/296

186 The socia l logic of space

sub-complexes have been added that house the new inhabitants ofthe system, those whose attentions can restore the patient tohealth. Third, these new sub-complexes control the distributedstructure in that without them the structure has become un-

ipermeable: in other w ords, reversing the previous situations, thebuilding has become genotypically unipermeable for the visitors,who now occupy a set of primary cells, and bipermeable (man-ifestly ra ther th an secretly) for the inhabita nts. These features n owcon struct the essen tial struc ture of the first variant of the reversedbuilding. The distributed structure is now the domain of theinhabitants; the visitors have been rendered asynchronous withrespect to each other, but synchronous in their relations to theinhabitants; and in the distributed system, as though in a street(but with roles reversed), there now exists a direct interface

without intervening hierarchy between the inhabitants and visi-tors.

Now here is this genotypical structure more aptly show n than inthe picture given in Thompson and Goldin's book The  Hospital,wh ich sho ws a 'nurs ing brother*, probably St John of God, kissingthe wounds of a patient.

6  The patient is sitting on a bench just

outside his cubicle. In the background are other patients in theircubicles, with curtains drawn back in some cases, drawn to inothers. In the distance is a doorless permeability leading intoanother space where other activity is seen to be going on. This isthe essence of what is to become in our time the 'professional'

relationship betw een doctor and patient in hospital. The p rincipalinhabitan ts, those whose special knowledge gives them the powerto cure, are brought into a direct physical relation with sufferers,but at the same time the relation between the two is unequal:insofar as this relation exists, it exists by virtue of the control ofthe distributed structure of the building by the inhabitants. Thistransformation is necessitated by the fact that for the purpose ofthe interface between inhabitant and visitor the higher asymmet-ric value of the inhabitant space no longer maps his superiorstatus. He does, of course, have such a space: he can retreat to the

sub-complexes away from the distributed system, where thetraditional positional and status differences between inhabitantand visitor are still inscribed - in the Tonnerre case the spaces inthe sub-complexes can easily be seen to have higher relativeasymmetry than the space of the patients. But the unequalinterface between the two is no longer recorded on the asymmetryor meaning dimension, but on differential relation to the ringi-ness,  or control dimension. The need for the direct interface,however, means that the control dimension is inherently weak. Itcannot be realised in a hierarchically arranged system of bound-aries,  since these would separate the inhabitants from the im-

mobilised visitors. But another kind of control dimension isalready present: a transpatial control dimension. The space of the

Page 201: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 201/296

Elementary building and  its  transformations 187

interface is the space of com mu nitas as witness ed in the pervasivepresence of altars in such space. The homogeneity of members ofcommunitas is singularly well-suited to the homogeneity ofcontrolled visitors in the genotype. The weakness of the spatialcontrol dimension is thus compensated by the strength of thetranspatial control dimension.

The second variant of the reversed building refers to thepathology of society rather than of individuals. In this case it isthe spatial control that is strong and the interface that is weak.Take for example the Narrenturm of the Allgemeines Krank-enhaus of Vienna built in 1784 (Fig. 116). The origins of thegenotyp e of this classical struc ture lie not in the need to con structa direct interface between the holders of knowledge and thosewhose descriptions are to be restored, but in the need to restore

society to health by segregating from it those elements whichundermine its description. In this case, not only are the relationsamong the visitors rendered asynchronous by their location inprim ary cells, but also the relation of inhabitants to visitors is alsorendered asynchronous by the addition of nondistributed andasymmetric spatial relations between them. This asynchrony ofinhabitant and visitor is rendered the more obvious by the factthat it is guards, the hierarchical agents of those who control theknowledge of descriptions that are to be restored by segregation,who move in the ringy spaces adjacent to the primary cells. Thebuilding is reversed, but only in the interests of spatial control,

not in the interests of constructing the restitutive interface. Ineffect, the building is about the pathology of social knowledge,but not about the reflexive knowledge that can restore it. All thatcan be achieved is the purification of the description of socialknowledge in the society at large by the maximal segregation ofthose random elements that destabilise descriptions.

Fig. 116 The Narrenturm ofthe AllgemeinesKrankenhaus of Vienna,1784.

Page 202: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 202/296

188  The social logic of space

Fig. 117 Jeremy Bentham's'Panopticon' of 17 91.

The reversed building thus has a genotype with two elements:the direct interface of reflexive knowledge and the reversed non-interface of control. To the extent that know ledge is to be app liedto restore descriptions the direct interface will be the dominantformative feature of the building; to the extent that society is to be

cured by the elimination or control of random elements theelimination of the interface will be the dominant theme. It is nowpossible to give an account of the genotype of Jeremy Bentham's'Pan op tico n' p roposa l of 1791 , wh ich is both precise and verysimple (Fig. 117). The design is nothing more nor less than anattempt to have both aspects of the genotype of the reversedbuilding at once. The building retains the strong asymmetricnondistributed structure of the control dimension, and at thesame time through visual links from centre to periphery itattempts to construct a direct interface between the inhabitantpossessors of knowledge and the prisoners. Moreover, the geno-

type was held to be constructable because reflexive knowledge atthe level of society was held to exist: society could be reformednot simply by the removal of people from society but by thereconstitution of social relations through the direct interface withthis reflexive knowledge, given the elimination of existing socialrelations by the control dimension of the building. The Panopti-con is perhaps a famous building not because its influence waspervasive, but because it represented a unique synthesis of asocio-spatial genotype whose two primary dimensions had hither-to been realised only at the expense of one another.

It is perhaps the fact that the Panopticon represents such apowerful, if largely unrealisable, genotype, that has misled histo-rians to overstate the importance of the building and to simplifyaccounts of its influence on subsequent trends in the architecturalorganisation of space. To understand the evolution of the impor-tant species of reversed building in the last two centuries it isnecessary to once again separate the two dimensions of thegenotype, and to look for the continuation of their conflict andmutual irreconcilability, rather than their assumed unification.This is particularly important because the conflict between thedirect interface and segregative control becomes in our time the

conflict between the professional and the bureaucratic models ofthe socio-spatial interface cons tructed by buildin gs, and as such is

Page 203: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 203/296

Elementary building and its transformations  189

a critical feature of the uneven evolution of many common typesof building today. To give even a brief account of these factors wemust first give some account of the relation between these twospatial modes and different approaches to the application of

reflexive knowledge to the stabilisation and of descriptions insociety - that is, through what we have come to know asbureaucratic 'intervention' and professional 'judgement'.

In society today the difference between what is legitimised as aprofessional mode of operation - lawyers, doctors, architects, andso on - and a bureaucratic mode lies in the nature of theknowledge that underlies the activity. What we call professionsare legitimised where the application of important knowledge,involving some elements of risk, is thought not to be reducible torules and proce dures . There can be many reasons for this irreduci-

bility. For example, knowledge may be radically incomplete, as itis in medicine, and require some degree of interpretation before itcan be applied to cases; or knowledge may change and developrapidly, following other trends and as new situations arise, as inthe case of architecture, and require constant revision to beconsidered up to the mark; or it may be that too high a proportionof the cases where the knowledge is to be applied and decisionsare to be taken raise special problems that makes them unique, asis so often the case with the law. In practice, all three factors arepervasive in all professions, and indeed the very existence ofprofession depends to a large extent on this being the case.

Whatever the details of the particular instance, it is generally truethat professions are characterised by a high degree of indeter-minacy in the application of knowledge to cases.

7  Decisions

cann ot be take n by ro te, nor by reference to a rule book that coversall cases. Judgement and interpretation are held to be required.The essence of the professional mode follows: responsibility forthe application of such knowledge is invested not in proceduresbut in persons - persons who as individuals accept the riskinvolved in dec isions in particula r cases, and as a collectivity takeresponsibility for the body of knowledge on which these decisions

are based. In professions, therefore, persons are all-important. Inthe bureaucratic mode the contrary is the case. Cases can be dealtwith bureaucratically to the extent that the knowledge on whichdecisions are to based can be reduced to rules and procedures.Once the reduction has been made then procedures not personsare the order of the day. Persons become unimportant because astandardised procedure can be carried out by anyone.

The two modes of applying knowledge have consequences forthe type of organisation that is appropriate to the way in whicheach deals with its cases. In the professional case, becausepersonal judgement must be applied in each case, it is not

possible to have a series of intermediaries between those whohold the knowledge - that is, those who have knowledge of the

Page 204: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 204/296

190 The social logic of space

principles to be applied - and those who deal with cases. Theessence of a profession, seen organisationally, is that those withmost kno wledg e of principle s deal directly with cases. Profession-al work c onsists in the direct applica tion of princ iples to cases. Iforganisations are structured so as to best control risk, then aprofessional organisation m ust be structured so as to ma intain th isdirect interface between principles and cases as far as is feasible.In a bureaucracy, where the central discipline is procedures, notpersons, the opposite is the case. If procedures are to control riskthen they m ust both be set out and be seen to be followed. T he m odeis essentially hierarchical. Those at the top of the organisationconcern themselves with principles - policy, as they would call it- wh ile those at the very bottom deal with cases. Usually therewill be a series of layers in which each layer inherits principles

from above and transmits procedures down below. At the bottomlevel are those who deal with cases - that is, who pay over thesocial security or interview the unemployed. In bureaucracies thedistance between those w ho deal in principles and those who dealin cases is as great as possible; and the internal logic of such anorganisation must tend to make it more so, since the eliminationof indeterminacy at the point of contact with cases must dependon procedures that can deal with every conceivable type of case,and this must in turn lead to an even more complex hierarchy ofcontro l. But the same organisational elaboration that in bureaucra-cies controls risk at the interface with the case will increase risk if

applied to professional organisations. If knowledge involves asubstantial component of judgement by persons with knowledgeof principles, then it follows that the distance between principlesand cases must be as small as possible.

The importance of this digression into the relationship betweenforms of knowledge and forms of organisation is that the differentmodes have fundamentally different consequences for space.More precisely, they have different consequences for the type ofinterface they construct between inhabitant and visitor, and thisin turn leads to generic differences in the spatial genotypes of

buildings. Under the influence of the different organisationalarrangements the relationships of the elementary buildings arere-shuffled in a way no less fundamental than in the reversedbuilding. An analysis of some of the variations can lead to twouseful outcomes: first, a theory of the species of interface thatun der lie the m uch larger family of varieties of building type - thespecies of interface is the most fundamental spatial feature of anybuilding, and a comparative analysis of these is therefore anecessary step to any theory of building types; and second, atheory of the relations between different species of interfacingtendencies that can occur in buildings as they become larger and

more co mp lex, and accom mo date a more diverse range of - oftenconflicting - organisational forms.

Page 205: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 205/296

Elementary  building and its transformations 191

Take for example the standard genotype for a purely bureaucra-tic building, that is, one which is organisationally hierarchicaland which interfaces inhabitants and visitors mainly at the lowestlevel. Th e com mo n form for such a building involves a large spacefor visitors, as shallow in the building as possible, and on the deepside of this space there is a series of booths or separatedwi nd ow s, each of whic h both acts as a barrier between inhabitan tsand visitors and provides the interface across which interaction isto take place. As in the shrine, the visitor space synchronises thevisitors. But it is no longer a distributed space. There is now onlyone way in and out for the visitor. At the deep edge of this spacethe booths have a curious effect: they make the inhabitantsasynchronous with respect to each other (that is, they each occupya discrete space), and insofar as the inhabitants interface with the

visitors, this asynchrony is retained for them. But for the visitorsthe interface is not asynchronous. All the booths are visible fromthe body of the visitor space. This closedness of the inhabitants*spaces and their consequent asynchrony, and the openness andconsequent synchrony of the visitor space is fundamental to thegenotype.

For the visitor even the inhabitants he sees have this marginalasynchrony. But behind them are layer upon layer of inhabitantshe does not see. In the nearest spaces on the deep side of theinterface there may well be further synchronised or semi-synchro-nised inhabitants; but beyond them, in spaces with higher relative

asymmetry reflecting stronger and stronger categoric control, arehigher- and higher-level inhabitants, until in all likelihood in thespace with the highest relative asymmetry there are the inhabi-tants whose preoccupation is, at least relative to the others, withprin ciple s rather th an cases. Th us the genotype is one of a shallownondistributed space in which visitors are synchronised, aninterface that is closed for inhabitants but open for visitors, andbeyond the interface an asymmetric structure of space mapping inits relative asymmetry the differential statuses of inhabitants. Inits basic structure this is a transformation of the elementary

building hardly more complex than the shrine.It may seem a large step from a social security office to a doc tor'ssurge ry, but the difference in size reflects a fund am ental differ-ence in the way in which professional, as opposed to bureaucraticinterfaces imply a spatial configuration. In the ideal model, aprofessional, being a person rather than an organisation, is dis-persed with respect to his peers. Only the minimal organisation isrequired to construct his direct interface with the cases withwh ich he m ust d eal. The small size of the lowest-level profession-al interface is thus itself a function of the underlying genotype ofrelations. The spatial form is related to the bureaucratic building,

but su btly different in almost all respects. There is a shallow spacewhich synchronises visitors while they are waiting to see the

Page 206: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 206/296

Page 207: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 207/296

Elementary building and its transformations 193

whose resolution is largely illusory. This renders the hospitalmore difficult to describe, but not entirely opaque to analysis -provided that analysis concentrates not so much on universalmodels for ideal hospitals, but on the spatial relations whereconflict between genotypical dimensions can occur, and the waysin which the conflicts are characteristically resolved. For exam-ple,  the doctor -patient interface is ideally asynch rono us, that is, itis realised in space set apart. This is simply realised in theout-patients and casualty departm ent by a simple cubicle system,into which the patient moves from the synchronised visitor space.In the wards, however, the inhabitant-visitor relation becomesreversed and a spatial control over the body of the patientbecomes necessary; ideally this requires the synchronisation ofthe control relation by means of the open ward. This, however,

means that the synchronised reversed control interface is inconflict with the non-reversed and asynchronous direct interfaceof doctor an d p atient. A simple solution is to 'fine-tune' the spatialstructure of the ward by providing easily drawn curtains orscreens to turn the bed-space of the patient into an asynchronousspace. However, this transformation is only made when definiteme dical ev ents at the doc tor- pati ent interface are taking place. Ifthe doctor is merely visiting on his rounds no attempt is made toconstruct the separated space. In this case the doctors participatenot so much in the professional interface but in the controlinterface. The progress of the do ctors from one bed to another is a

celebration of the fact of reversal in the building, and emphasisesthe radical inequality of a relation in which one body controls thespace of another. It is a declaration of the class relation betweendoctor and patient. Consequently when the more affluent patientshave separate rooms the doctors' rounds are not a celebration ofthe reversed control dimension but of the professional interfacewith his client.

But the very essence of these relations is realised in theprincipal space of the hospital drama: the operating theatre. Fromthe point of view of the model of a building as an interfacing

system, this is a special space indeed. First, is it the space inwhich the reversal effect is maximised, in that it is here that thespatial control of the visitor's (in the model sense) body by theinhabitant is made total. But second, it is the space in which thedirect interface of doctor with patient is realised in its mostheightened form. The spatial structure of the operating suitegenotypically reflects both dimensions. It reflects the first in thatthe suite is highly distributed, in the sense that it has many exitsand entrances, and in this it maximises the control by theinhabitants of the distributed system. It reflects the second in thatthe interfacing space is deep with respect to the rest of the

complex, reflecting the almost 'sacred' category associated withthis heightened interface. The operating theatre illustrates the

Page 208: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 208/296

194 The social logic of space

essential social 'meanings' of both dimensions of the syntaxmodel: that symmetry-asymmetry is about the strength of categor-ies and distributed ness- non distributed ness is about the control ofcategories.

These rather abstract considerations of buildings in terms oftheir species of interface does not, unfortunately, tell us how todesign them properly. On the other hand, it does show that whatwe know already about buildings has a certain underlying logic toit, in spite of the formidable heterogeneity of types that buildingsappear to present. The model suggests that our intuitions aboutwhat is and is not proper in a particular type of building may befounded in considerations that have more to do with the structureof society than with idiosyncratic prejudices or alleged prefer-ences for certain types of spatial relation. The sense of appro-

priateness about spatial relations does not arise from somepsychological predisposition, but from the socio-spatial model ofunderlying relations portrayed in the space. This implies thatspace resp ond s more to macro-social formations than to psycholo-gical ones.

However, this does not mean that normative issues of designcan be settled simply by reference to genotypical arguments.Leaving aside for a moment too-frequent conflicts betweengenotypical dimensions (conflicts that may only be spatiallysolvable by ad hoc fine-tuning of solutions), there is one themethat underpins all others in the analysis of buildings as relationsbetween inhabitants and visitors. This is the theme of inequality.By articulating a relation between one who is a privilegedadherent of some domain of knowledge ascribed in the spatialstructu re and social pur pos e of a buildin g and others wh o are onlypetitioners in the building is implied that a building is of itsnature about relations of inequality. Almost by definition ques-tions of inequality can only be described, not solved, by analyticmeans. The pervasive dimension of inequality in building foreverputs out of range a solution arrived at by purely analytic m eans. Abuilding is already a normative statement and it would be wise

not to preten d that it is anyth ing else. All we have tried to do hereis to show how these normative forms of inequality enter ourunconscious by taking on physical form in the real world.

But if it does not perm it us to design building s by pure an alysis,a precise description of the spatial interfacing of inequalities bybuildings does at least raise the possibility of a pathology ofdesigns and, perhaps more important, a pathology of the fashion-able and changing genotypical themes underlying design at everystage of the evolution of real building types. Suppose, for exam-ple,  an office organisation decides to move from subdivided officeto what is euphemistically called 'open-plan'. How is this to be

interpreted? The model is very clear. In the elementary buildingthe status of inhabitants is given by occupation of an asynchro-

Page 209: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 209/296

Elem entary buildin g and its transform ations 195

nous space on the deep side of the main circulation system. Therelative asymmetry resulting from such subdivision guaranteesthe status of inhabitants, if nothing else, however low their statusis (unless of course the building is reversed). The effect ofabolishing this set of spaces and, in effect, synchronising a subsetof the former inhabitants (it is never all of them   — status isstill mapped into asynchronous spaces with higher relative asym-metry) is clear and simple; it converts inhabitants into visitors.Th is transforma tion is the n confirmed by a certain reversal effect,which is achieved by the synchronisation of the distributedsystem of spaces, that is, by the synchronisation of the controldimension. Part of the effect of openness lies in the transformationof the distributed system. Because it is synchronised it is nolonger possible for the individuals depending on that system to

move freely. This has the effect of converting the distributedsystem from a permissive circulation system, neutral with respectto categories of inhabitants, into a control system by which thosedependent on it become fixed to their places. It is paradoxicalperhaps that opening up the system is the means of controlling it.Nevertheless, the logic of the model tells us what direct experi-ence tells us more obscurely: that the open-plan is a means ofconverting what were status differences between inhabitants intowhat is virtually a class difference within the inhabitant structureof the building. Of course this will not be the case if all theoccupants of the space have equal rights of movement in the

distributed system. This will change the nature of the modelcompletely by changing one essential dimension of its logic. Norwill the open-plan model necessarily be realised in a 'semi-open'plan. It depends on the degree of synchronisation of the distri-buted structure and the degree of closure of the individual spaces.Even so, it remains the case that in its pure forms, the open-plantransformation can act as a means, other things being equal, ofvirtually 'proletarianising' part of the workforce.

The open-plan movement in school design is more subtle, butagain it is not the 'liberalisation of space' that it is often presented

to be. A traditional school design, with its separate class-rooms,its separate circulation system, and its special space for assemblyand play, has a clearly defined genotype. The visitors, that is, thepup ils, are everywhere synchron ised, provided they are in inhabi-tant primary cells deeper than the main circulation system of thebuilding: that is to say, they are everywhere locally synchronisedwith respect to particular inhabitants. These inhabitants, how-ever, are asynchronous with respect to each other, maintainingtheir relative categoric statuses by being mapped onto separatespaces with a higher relative asymmetry value than the spaces ofthe circulation sy stem. Their status as inde pen den t professionals is

also preserved from the control hierarchy of the organisation inthat the head teacher's room is located near the entrance, thus

Page 210: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 210/296

196  The social logic of space

governing the circulation structure of the building, that is, thespace of the visitors, more than the deeper space of the inhabi-tants, that is, the teache rs in the ir class-rooms. This leads to a verycharacteristic inequality structure in the school as a whole. The

relation of inhabitants and visitors is locally elementary, in thatthe teacher in his class-room is not a guardian of the circulationsystem, fixing visitors in a specific space, but an inhabitant ofspace asymmetric with respect to the pupils, from which point heinterfaces with them. The separate room guarantees this asymmet-ric interface w ith the pu pils as well as relative asym metry w ith res-pect to other inhabitants, implying a stronger category and there-fore status. Globally, the school has a relatively weak controldimension, in that the relation of distributed circulation systemand class-room s does not ma p the differential between inhab itants

and visitors. Globally, as well as locally, the system is one run byasymmetry rather than control - that is, it is more like a ramifiedelementary building than a reversed building. Only insofar as thehighest status inhabitant occupies shallow space near the circula-tion system, and that circulation system has few rather than manypoints of control, is there a global control dimension mapped intothe building.

Now if we simply transform this structure by increasing itsringiness - one very typical modern transformation - then theprincipal effect this will have will be to give individual inhabi-tants more control of the system than was the case when it wasmore tree-like and the head teacher was located near the base ofthe tree. This seems an unambiguously 'progressive' move insom ething like the sen se it is intende d to be. But if the transforma-tion to open-plan is made, a much more radical transformationappears in the genotype in all the vital dimensions ofthe traditional model. First, the status given by the relative asym-me try of the class-room space is elimina ted, so that the statuses ofteachers with respect to each other are no longer supported by thespatial structure. Second, the open-plan has the effect of synchro-nising the distributed structure, thus forming it into a unified

system of control; this undoubtedly increases the degree ofcontrol potential in the system. Finally, the relation of teacher toclass is transformed from elementary to reversed, in that theteacher is no longer so much in an asymmetric relation to theclass, but in a relation of one who controls the circulation systemto those who are fixed into a particular space. In Basil Bernstein'sterms,  the relations are shifted from those of power to those ofcontrol.

8  Once again, space is neither what it seems to be at first

sight, nor what it is represented as in the manifestos for spatialchange. The result of what appears as a liberation is that, apartfrom the head teacher, inhabitants lose status and the visitors are

subject to a reinforced regime of control, not locally as before, butat the global level of the whole structure of space in the building.

Page 211: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 211/296

Elem entary build ing an d its transform ations 197

Buildings, it would appear, are rarely what they seem. Noind ivid ual spatial rela tions hip rev eals itself except by reference tothe global scheme of the building, and no global scheme revealsitself except through the nuances of its local relationships. Thereare no principles by which it can be said that in any conditionswhatsoever a particular relationship has a certain social reference.Yet buildings are analysable, provided they are approached w ith amodel that looks first for the global genotype, then for thefine-tuning of particular relationships in particular locations. Allthat can be said at a general level is that being what they are, thatis ,  a means of ordering relations between those who through thebuilding have the status of inhabitants and others who throughthe building have the status of visitors, buildings always act toreinforce some structure which, locally at least, appears as an

inequality.But this ne ed does not lead us to be pessimistic about the natur e

of buildings in general. What is locally an inequality is notnecessarily an inequality in the global system, in the obvioussense tha t the fact that ev eryone in a settlement lives in a separatehouse, generating everywhere the local inequality of inhabitantsand visitors with respect to that domain, does not imply inequal-ity at the level of the whole settlement. The matter is more subtleand often the contrary can be the case: local inequalities can bethe means by which global equalities are realised in the form of adescribable system. However far we may proceed in analysing

buildings in their own terms, their global nature will not revealitself unle ss w e also relate them to the global socio-spatial systemof wh ich they form a part. This m eans looking beyond the level ofthe settlement to the level of society   itself.  Society, it will beargued, is not an abstraction which finds itself a physical locationand then defines an arrangement, but an entity with its owninternal spatial logic and even its own spatial laws. This 'spatiallogic of society' is the subject of the final chapters of this book,and it is the means by which the analysis of the spatial structuresinside and outside primary boundaries can be seen in a clear

relation to each other to constitute the social logic of space in thefullest sens e. But before w e can pro ceed to this, we m ust first of allreturn to the formal foundations of the syntactic argument anddraw out certain general theoretical principles from our examina-tion of the syntax of space - theoretical p rinciple s whic h will thenbecome foundation stones for a model of the spatial logic ofsociety.

Page 212: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 212/296

The spatial logic of arrangements

S U M M A R Y

The argument now returns to the foundation of the problem of order and

argues that, by using the full framework set out in Chapter 1, it is possibleto describe physical arrangements in terms of their abstract orderingprinciples in such a way as to relate order and randomness in a new way.Randomness emerges, in effect, as a form of necessary order both inspatial arrangements and in social systems. A general framework ofrelating different kinds of order is then established, dealing with bothmaterial and con ceptual c om pon ents of the arrangement in a unified w ay,and dealing with randomness and order in the same terms. The chapterends by relating the dimensions of the arrangemental model to notions ofideology, politics and productive base of a society.

From structures to particular realitiesIn Cha pters 2 ,3 , 4 and 5 the aim has been to show that, in spite ofits variety, human spatial organisation has, however imperfect, acertain interna l logic. This internal logic accoun ts, we believe, forthe kno wab ility of space. Because it has the property of know abil-ity, space can operate as a mo rphic language, that is, as one of themeans by which society is constituted and understood by itsmembers. By embodying intelligibility in spatial forms, the indi-viduals in a society create an experiential reality through whichthey can retrieve a description of certain dimensions of their

society and the ways in which they are members of it. Thesedescriptions are essentially abstract in nature, although they aredrawn from a concrete reality. Descriptions are summaries of theprinciples of a spatial pattern, not simply an enumeration of itsparts.  In the fashionable language of structuralism, these descrip-tions w ould be called 'deep structu res'. How ever, as far as space isconcerned there need be no mystery or imprecision. Theseabstract structures are what we express and quantify throughsyntax. Syntactic statements are the abstract genotypes of spatialrealities.

In setting out to exhibit the variety of spatial forms that exist as

the pro duc t of an under lying system of generators we have, withinreasonable limits of interpretation, followed the principles of

198

Page 213: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 213/296

The spatial logic of arrangem ents  199

what might loosely be called the structuralist method. The phe-notyp ical forms of space are seen as the prod ucts of abstract rules,and the different rules underlying different phenotypical formsthemselves form a system of transformations. But structuralism

has always had a philosophic aim as well as a methodology. Thisaim is to  objectivise  the concept of structure in such a way as toshow that the sources of social behaviour lie in society itself andthe particular forms it takes, not in the individual. The syntaxmodel, to some extent perhaps achieves this. It shows that spatialorganisation is not only a means by which collections of indi-viduals can constitute society but, because space has its own lawsand its own logic, it can also act as a system of constraints on thesociety. Space, because its laws of pattern are independent ofhuman wishes, has at least a dialectical relation with society. It

can ans we r back. It does not obey some set of social determ inantswithout imposing some of its own autonomous reality.It could be objected that, in arriving at relatively autonomous

descriptions of the genotypical structures of space organisation,we may have inadvertently removed some of its most importantdimensions of social content and meaning, in particular thosewhich have to do with the broad economic and political structureof society. It may be even worse. In saying that in a morphiclanguage, like space, formal syntactic patterns and quantifiablerelations are the dominant properties, and that these constitutesociety and 'mean themselves* rather than exist to communicate

information about other aspects of society, there is a danger thatspace is thereby split off from the main fabric of society. It may bethat, in showing how space can locally be constitutive of socialreality, we have done so only at the expense of showing howglobally it does so.

Th is difficulty may be inh eren t in structu ralism. It may even bea paradox in the method as a whole. If structures are to be shownto be objective and not de pend ent on individuals, then they m ustbe shown to follow au tonom ous laws. Forms and patterns are notto be explained as the product of different external determina-

t ions.  Instead, by the very act of describing structures anddemonstrating their existence, it is implied that the laws ofstructure are in some sense internal, not external. This is why itis possible for structuralism to follow the classic scientific proce-dure of trying to associate a mathematical model of some kindwith the phenomena under study, as both a description and anexplanation.

1  The paradox arises if the exercise is successful. If

the laws of particular structures in society are internal andautonomous, then what can they have to do with society? It is aneasy step from the idea that structures have autonomous laws tothe conclusion that they are therefore an autonomous reality. It

may even be entailed in the premises.In the case of the syntactic approach to space the problem is

Page 214: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 214/296

200 The social logic of space

particularly difficult, because in several instances we have de-liberately tried to eliminate the most commonly asked questionsabout space. For example, in some cases the question as to why aparticular society adopts a particular settlement form is answerednot in terms of some social or economic function, but by sayingthat, given some set of initial conditions and a consistent processof aggregation, the settlement form is a product of autonomousspatial laws, not of human determination. If questions of social orfunctional determination are then reformulated in terms of thoseinitial conditions and the consistent process, then there hardlyseems enough matter for any reasonable external determination togrip onto.

But the parad ox o nly appe ars if it is assum ed tha t the essence ofsociety is something other than its structures, that is, in present

terminology, something other than its morphic languages and thepatterns they constitute. Once this assumption is dispensed w ith,the problem is transformed. It becomes a matter of showing howsociety is constituted by the inter-relations of morphic languages,all of which are realised, and are therefore observable, in realspace and real time.

The essence of the argument to be put forward in this chapterfollows from this. All social processes, wha tever their abstract andconceptual nature, are realised in space. For example, kinshipsystems - a speciality of abstract structuralism - have well-defined spatial outcomes in terms of who lives with whom, whoshifts residence and when, and what patterns of encounter areentailed by the formal system of relations. The intention here is toconsider such systems only in terms of their spatial output andpattern. Having, in the last three chapters, tried to  socialise  th enotion of space, we hope now to show how our conception ofsociety can be usefully spatiaJised. The convergence on thenotion of a system that is at once social and spatial will suggest,we believe, certain perfectly natural - and in some cases oftenobserved - correlations between spatial organisation and fun-damen tal structuring mechanism s in societies - mechanism s that

seem close to what a society essentially is.First, it will be necessary to bring the syntax model properly

into the conc eptua l framework of the notion of an arrangement setout at the end of Chapter 1. This w ill entail a fairly fundam entalcritique of one of the invisible tenets of structuralism as it hasdeveloped so far, one that appears largely responsible for the gulfthat now exists between analysis of generalised structures and thecapacity to analyse particular realities effectively. It will lead onto a more precise articulation of the dynamics of arrangementalsystems, suggesting how it is possible within this framework tobridge the gap between a statistical  view and a structural view of

social reality, views w hich w ithin cur rent habits of thought appea rto be far apart.

Page 215: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 215/296

The  spatial logic of arrangements  201

Second,  we  will  try to set up a  simple  - and  simplified  -

model  for considering societies as spatial systems, and examine afew examples that illustrate  its  basic dynamic dimensions. Thiswill ,  we  hope, achieve  two  objectives, albeit  in a  rudimentaryway: to show that spatial dynam ics may have a more fundamentalrelation  to  social morphology than  has  generally been thoughtsince nineteen th-century anthropology first opposed 'territory' to

'k inship '  as the two  polar bases  of  society2;  and - a  more

philosophical aim - to show that it is possible to build a model ofsociety  in  which structure does  not  appear as an  abstract globalsystem anterior  to, and  independent  of,  social realities, but as a

property  of  reality  itself. In  fact,  by  spatialising  our  concept  of

society,  it  appears possible  to  build bridges over  the  enormousgulf that structuralism  has opened up between theory and particu-

lar social realities  by its  pursui t  not  only  of  abstractions, but ofabstractions that refer only  to  abstractions  in  society  itself.

Abstract materialism

The fundamental theoretical problem  of any sociology is to showwhat society can be,  that  it can get  inside individuals  and  comeout as behaviour and thought. Sociology by definition reverses the

normal concept of  scientific reduction: the behaviour of the smallentities, individuals,  is to be  explained  in  terms  of the  largercollective entity, society. Of course, there is no  necessary reason

why such an aim should be pursued. It might be better to  explainthe larger entity  in  terms  of the  small.  But in  this case  we are

virtually com pelled  to  abandon sociology, since either there existno laws at the  level of society  itself, in  which case the subject  is

reduced to an  extended psychology; or  there exist laws that haveno effect on the individual , in which case they would be pointless.An authentic sociology must therefore somehow accomplish  a

reversed reductionism:  it  must show  how  different forms  of

society produce different forms  of  thought  and behaviour  in the

individual .

The programmatic  aim of  structuralism  has  always been  tosolve this problem  by objectivising  the concept of structure at the

level  of  society  itself.  Structure always means some unifiedsystem  of  rules possessing  an  internal logic of  their  own,  whichthe individual  is  able  to  internalise  and  follow  in his own

behaviour. Since rule structures  do not  generate closed systemsbut  can be  open-ended,  the  concept permits  the  notion  of  'rule-governed creativity' whereby  the  creative  and to  some extentunpredictable behaviour  of  individuals  is  reconciled  to the  ideathat there exists some substructure  of  rules.

Without doubt this conceptual scheme  has  yielded useful

insights into some aspects  of  social reality. Yet  there remains anunderlying scepticism  as to whether  the underlying problem has

Page 216: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 216/296

202  The social logic of space

been broached, let alone solved. It appears clear that structures are

involved in the actions of  individuals, yet it is not clear that thos estructures  in any  sense represent society.  On the  contrary, theyappear  to  emerge from  a  realm  of  pure thought, unformed  and

even uninfluenced by the processes of a working society. Structur-alism pays attention to how structures organise society, but not to

how society organises structures.  Any  reasonable sociology  re-

quires  an  answer  to  both questions. Structuralism only interestsitself  in the  second.  Its  desire  to  show  the  logical form  of

structures leads  its proponents  to  found structure  in  logic  itself,

and eventually,  by a  natural extension  of the  argument,  in the

human brain. Structuralism therefore seems  to  avoid both  the

question of the  origin  of  structure, and the  question of its  locus.Ideally  the  answer  to  questions  as to  where structures originate

and where they are located ought to be: in society  itself.  Structur-alism does not suggest how such an answe r could be given. This isthe first  of two  counts upon which structuralism  is  commonlycriticised.

The second count again concerns  the  relations between struc-tures  and  society.  But whereas  the  first criticism concerned  the

problem  of  society  as  anterior  to  structure,  the  second concernsthe problem of society as a consequence of structure. Structures, itis said,  may help us to  understand what society  is  made of, but

they  do not  tell  us how  societies work.  If we  accept that  the

concept of structure  is necessary  in principle to any real situation

in which socially meaningful events are  transacted, the  conceptsof structure  we  possess, with their emphasis  on  internal logic,appear  too  pure .  At  worst they appear almost  to  contradict  our

intuition  of  society  as an  unstable, achieved, continuously  re-

negotiated phenomenon. Structures are ideal and abstract. Societyis incongrously imperfect, existing only  by  virtue  of  concreteactivity. Structures are algebraic and static. Societies seem subjectto dynamic and statistical laws. Structures have 'on-ofP switche s.Societies have thresholds which vary, continuously  or  catas-trophically, with  the  presence  or  absence  of a  large number  of

variables. Important aspects of  pattern  and form  in society are todo with  the  organisation  of  material production. Structuresappear  as a  preoccupation with  the  cognitive  and  with socialreproduction. Structures,  at  best, deal with  one set of  socialphenomena  at a  time.  But  society itself  is  organised  by the

conjoint effect  of a  multiplicity  of  structures.  How can  theseconflicts  be  reconciled without  an  inconsistency  in the  method,and without abandoning  a  structural approach?  Yet if we do

persevere with  the  structural approach  and  look for  'meta-struc-tures '  or  'co-ordinating structures'  we are in  danger  of  over-determining society  and  producing  a  reductio  ad  absurdum.

Whatever  it is, society is not a dance or a ritual. It is, at the veryleast, a statistical not a  mechanical reality.

3  Structuralism cannot

Page 217: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 217/296

The  spatial logic of  arrangements  203

bridge this gap. It is  therefore seen  to fail  to provide a  reasonablesolution, even  in  principle,  to  another vital aspect  of the fun-

damental problem.  It  fails  to  provide  an  account of the  relationsbetween abstract structures  and  particular realities.

4

As  a  result,  we are  left with structures that inhabit  a  separatereality. They connect  to  society neither  in  their origins nor  theirconsequences. Instead, their ultimate Jocus  is  said  to be  outsidesociety altogether  in the human brain itself: their order reflects its

structure; their logic reflects  its  logic. The  realities made by man

express  and  articulate  the  elementary structuring mechanisms of

the brain. Starting from   a  sociology that reduced society  to

individual action, structuralism  has, it  seems, only presented  us

with  a  sociology that reduces individual action  to  collectivethought. No way has, after  all, been found out of the  fundamental

problem.This  is  because there  is a  simple  but  fatal flaw  in the  founda-

tions  of  structuralism.  It  lies in the  concept  of  ' rule ' itself. In the

common concept , a rule is anterior to the events it governs. A ruleis followed.  An  event  or  behaviour obeys  a  rule.  The  rule  of

necessity exists prior  to the  event.  In  structuralism  the  idea  of a

rule  is basic. In it is the foundation of the concept of structure. Astructure  is a  co-ordination  of  rules.  A  code  is an  underlyingsystem  of  rules  by  which spatio-temporal events are to be corre-lated and  interpreted. It  follows that structures, or codes, are priorto events. Structuralism   was  predicated  on the  insight that  the

variety  of  surface appearances  in  society would  be  expressed  as

the product  of  underlying,  and  therefore anterior rules.

The fatal flaw follows from   the  original insight. This principleof  the  'anteriorality of the  rule ' sounds innocuous enough, but it

has hidden consequences. If a rule exists prior to an event, then it

must exist somewhere.  If  there  is a  programme, there must  be a

programming organ, some centre where these rules are  encoded.What other candidate for such a centre can there be other than the

brains of  individuals. If behaviour  is  rule-governed then the  rulesare prior  to the  behaviour.  And if the  rules  are  prior  to the

behaviour, then  the  Jocus of  these rules must be the brain  itself.The 'brain structure' theory of the Jocus of  structure thus followsfrom  the  premises  of  structuralism  and,  eventually, from  its

original insights. However,  we are now  back where  we  started:with  a  society  in  which  the  principles  of  order  are  located  in

individuals,  not in  society  itself. The  main aim of  structuralismtherefore turns back  on itself, and  degenerates into what  it was

trying  to  escape from.

The discussion  of  arrangements  in  Chapter  1 may  clarify  one

reason why this has come to be so. The function  of the brain in the

structuralist theory is to act as the description centre for the socialsystem. In this way, the biological mod el is re-introduced, not as a

proposi t ion, but as an  invisible assumption. The  'brain structure*

Page 218: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 218/296

204  The social logic of space

solu tion to this problem offered by the structura list is nothing lessthan one more reduction of society to a spatially continuousbiological system in which the unfolding of spatio-temporalevents is pre-programmed. From there, since society is not aspatially continuous biological system but a system structuredfrom discrete entities, the degeneration of the theory is inevitableand immediate. The failure of structuralism to become a sociolo-gical theory follows from this degeneration.

The relevance of the idea of arrangement can now be madeproperly clear. Arrangements, we may recall, are systems com-posed of spatially discrete entities, or individuals. The genotypic-al stability of arrangements arises not from the existence ofdescription centres, since manifestly there need be none at thelevel of the collective system. Instead each individual is equipped

not with a description centre in which its arrangemental instruc-tions are encoded, as genetic instructions are encoded into theorganism, but with a description retrieval mechan ism, by which itcan retrieve and internalise a description of its arrangementalsituation. The syntax theory shows how such descriptions can beabstract, and can be retrieved from complex realities.

In arrangemental systems, the concept of a rule is reversed. Thespatio-temporal event precedes the rule. No spatio-temporal eventin itself necessarily implies a rule. The rule exists only when anabstract description is retrieved from a spatio-temporal event andis then re-embodied in another such event. In arrangements

reproduction is the fundamental concept, not that of the abstractrule .  In place of the rule existing prior to the event, we have theabstract descrip tion retrieved from even ts, and m ade the mod el forthe reproduction of that event. The abstract entity is in a kind of'reality sandwich*. In order to exist it must be abstracted from onereality and re-embodied in another. If the description is notre-embodied, then the description is not sustained for thatarrangement. If it is not retrieved in the first place, then it does notexist. Th e sch em e: reality —> de sc rip tio n- * reality 2  is the fun-damental motor of the arrangement, not the pre-existing rule.

Without it no arrangement exists.It follows that in an arrangemental system the existence of

structure depends on two kinds of work: on practical activity andon intellectual activity. Without either, the system is not sus-tained. Yet either objective reality or the description retrievalmechanism can be responsible for evolution in the system. As thesyntax theory shows, new spatio-temporal structures can emergefrom a collection of individual activities, where the collectivestructure is of a higher order than any of the descriptions thatwere followed by individuals in their action. Nevertheless, de-scriptions of these higher-order realities can be expressed in the

same abstract language as the lower-order descriptions. On theother hand, the unfolding of the syntax schemes themselves

Page 219: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 219/296

The spatial logic of arrangem ents  205

shows how, given an initial step, aspects of descriptions may becombined with eaeh other to form more complex descriptionswhich may then be followed. Thus there is no problem at all indistributing the tendency of arrangements to morphogenesis be-

tween both the laws of objective spatial reality and the combina-torial powers of the human mind. Yet, in spite of this dialecticbetween the mind and objective reality, we may still posit theautonomy of the structural laws of space. The practical limits ofthought are the limits of what is constructible. In arrangements,practically speaking, the laws of the mind are nothing less thanthe limits of possibility in particular realities.

In structuralism the principle is that of the primacy of structure,that is the primacy of the rule. In the theory of arrangements wemay establish the contrary principle: the Jaw of the  primacy of the

phenotype, that is, the  primacy of  part icular  realities.  It is onlythrough embodiment in spatio-temporal reality that structureexists.  It is only through the intellectual activity of man inretrieving descriptions that structure is reproduced and perpetu-ated. Without reproduction there is no arrangement. Thereforethere is no arrangement without structure. The law of the primacyof the phenotype and the law of the necessity of structure are notin contradiction. T he one requires the other. This necessity comesfrom the fact of reproduction. Arrangement is only arrangementby virtue of reproduction. Reproduction only exists by virtue ofdescription retrieval. Description retrieval only exists by virtue of

the prior existence of a spatio-temporal reality.This is why it was so important to found syntax on the concept

of a random, ongoing process, that is, a process  without  descrip-tion retrieval. It is necessary, in order to establish the primacy ofthe ph enoty pe, to establish the d om inance of reality over the rule.At the foundation of an arrangement, there is no predeterminedstructure: only rando mn ess. For syntax to appear requires not thatthe rule precedes the event, but that an initial description isretrieved from spatio-temporal reality and then applied consis-tently in the succeeding events in the process. Syntax is a

consistency in description retrieval and re-embodiment from onemoment to the next. The process itself is guaranteed by therandom underlying system.

As previously argued, the underlying random process is con-ceptually analogous to the inertia postulate in physics. It allows aformal theory to emerge unencumbered by the metaphysics ofultimate causes and unmoved movers. Without the anteriority ofan unordered reality, we would be forced into an Aristotelianstance, assuming as natural that wh ich need s to be explained. Theproper question is: how and why do human beings reproducewhat they do, and how does this unfold through the dialectics

of thou ght a nd rea lity into a mo rpho gene tic, unfolding sch eme . Ifwe do not place reality before the rule, then by inevitable logical

Page 220: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 220/296

206  The social logic of space

steps we are forced back to the brain stru cture theory. The brain as

originator  of  structure  is  none other than  the  unmoved mover of

Aristotelian physics  in the guise of a  computer.In effect,  the sub stitution of a  description retrieval principle for

description centres answers  the two  intrinsic questions aboutstructures  -  their formal origin  and  empirical  locus  -  with  one

and  the  same answer: reality  itself. The mind, and in  most casesmany minds,  is the  control mechanism  but not the  substantiveentity.  The  logical powers  of the  mind  do not  account  for the

well-ordering  of structures. The logic is external to the mind and

located first in the configurational limitations of space-t ime itself.

The mind reads structure and re-invents it, and learns to think the

language of reality. But it does not originate it unaided, and it doesnot sustain  it  unaided. Without embodiment  and  re-embodiment

in spatio-temporal reality, structure fades away. Even thoughstructures hav e internal laws, they are  only made real as abstrac-tions  by the  physical  and  mental activity  of  many individuals.Thus structure  is not a  global abstraction, floating  in a  void and

superimposed  on  reality  as an  abstract  set of  determinants;  it is

both derived from   and depends  on  reality. Moreover, such struc-tures  are not  systems  of  rules  in the  accepted sense: they  are -

possibly marginal  -  restrictions on an  otherwise random processleading to global outcome s that have a partly structu ral and partlystatistical nature. Because this is so, the  extrinsic questions aboutstructure  -  principally those  of the  social origins  and  social

consequences  of  structure  - can be  brought into  a new  focus.Abstraction  and  materalism  are not in  conflict  in  sociology  any

more than they are in natural science. An abstract ma terialism  is

possible.

The semantic illusion

The notion  of an  arrangement with description retrieval  per-

mits,  in  principle,  the  re-integration  of the  material  and con-

ceptual aspects  of  order  in  artificial systems, aspects which  the

structuralist tradition strongly separates. It does so by  introducinga spatio-temporal dimension into the notion of structure itself. A

further exploration  of the m echanics  of  spatio-temporal arrange-ments  can take  the  argument  a  little further  and suggest how the

mechanical ,  or  deterministic notions  of a  rule-governed systemthat prevail in the  structuralist tradition can be assimilated to - in

effect  be  shown  to be a  limiting case  of - the  statistical  or

probabilistic notions  of  order that have tended  to  prevail  in

empirical sociology. One further result of  this exploration will be

to show that  the  notion  of  control  of  structures  is not  merely  a

separate dimension  of the  system,  as it  were  in an  orthogonal

relation  to structure, but an  aspect of the  structure  itself.Description retrieval mechanisms  in  spatio-temporal arrange-

Page 221: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 221/296

The spatial logic of arrangem ents 207

ments can be illustrated in a very direct and practical way bytaking the reader back to the discussion of beady ring settlementsin Chapter 2. The reader was first presented with a set of smallaggregations without any apparent order (Fig. 4(a)-(f)). Then itwas shown that all larger settlements in the area, while retainingthe local indeterminacy characteristic of the smaller set, had thebeady ring structure, subject to local topographical constraints.Once the reader saw this and understood the principles ofgenerating global beady ring structures from a system with purelylocal rules, then he could look back on the earlier set, and seethese formless aggregations in a new way: as settlements on  theway to  becoming a beady ring structure. As might the in habitan tsthemselves, the reader, as it were, retrieved a description of theabstract global form and with this model in his head saw the

world, from which the model was derived, in a new light.This process is easy to demonstrate and easy to describe in

words. What is not clear is how a process that involves both amorphogenetic event in the real world - the appearance of theglobal beady ring form out of the local rule - and a conceptualevent - the mental process by which this morphogenesis isgrasped - can be thought of and represented as dimensions of asingle system. This is after all not just a problem of patternrecognition, to be circumnavigated by general statements about'interaction' between the mind and the physical world: it is thecentral p roblem of sociology, asked in a slightly m ore precise way.

A society is a very complex set of inter-related physical events insome unknown relation with the structures of the brains ofindiv idu als that ap pear to control events locally. To give a preciseaccount of how the description retrieval mechanism works in thisrelatively simple case of morphogenesis involving both materialand conceptual dimensions might therefore provide some clueabout the parallel mechanisms in societies in general.

The first step is to recognise that systems w ith both material andconceptual dimensions are not at all rare in society. In fact, theyare normal and everywhere, used in a perfectly natural way, but

not recognised for what they are because our habit is to assumethat the mind and physical objects inhabit separate domains.Take for example an everyday system like a pack of cards. Thisperfectly illustrates the pervasive co-presence of material andcon ceptu al a spects in the sam e system. A pack of cards is at least aset of material 'individuals', each of which exists to embody anindividual in a purely conceptual system: the identity of being thefour of hearts or king of clubs. When usage is taken into accountthe inter-relation is even stronger. Card playing invariably in-volves material events, such as card distribution and shuffling,whose material randomness continually creates novel situations,

without wh ich the game cannot be played. Card games depend asmu ch on these material transactions as much as they depend on a

Page 222: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 222/296

208 The social logic o f space

permanent orientation of the mind towards description retrievalin relation to these transactions. It is not enough to see theserelations as an interaction. The material and conceptual compo-nen ts of the system interp enetra te each other so com pletely, that it

would seem that there must be a way to capture its dynamics moreexactly.

First, consider the abstract logic of the pack of cards. It is clearthat the knowability of an individual card, say the four of spades,is dependent on certain well-defined properties of the whole packthro ugh w hic h it cons titutes a structure d set. The four of spades -althou gh it does not me an anything apart from its own struc ture -is only inte lligible by vir tue of being a mem ber of a set governed bya rule system: in this case the rule system that assigns one realcard to each possible member of an abstract set generated by four

suits and thirteen numbers. This rule system we may think of asthe 'master card* of the pack. It does not exist in a physical sense,but its logical existence is indubitable. It is implied by thestructured set of real cards and it gives them knowability. Themaster card may be though t of as something like a genotype of theset, and the individual cards as the complete set of phenotypesgenerated by the genotype. Each phenotype implies the genotypein order to guarantee intelligibility.

In effect, the act of playing a card really means playing whatmigh t be called a bi-card: that is, a card d ivided into two parts, sayan upper and lower half,  in the upper half of which is inscribedthe genotype, and in the lower half of which is inscribed thephenotype. Of course, it is simpler to assume the genotype, andnot to include it in the phenotype. Nevertheless, the fact that itcan be omitted from the spatio-temporal aspect of the system wecall a set of playing cards does not mean that it can be omittedfrom the logic of the system. The master card, or genotype, tactitor otherwise, is the precondition of having any real playing cardsat all.

But likewise the necessity for the system to be realised througha set of physical individuals, capable of being re-arranged and

re-shuffled at will, is omitted from the representation of the logicof the system as contained in the marks made on each card. Seenabstractly these would constitute the same logical system if theywere all realised on a single sheet of paper. The existence ofindividual cards is recorded only in the empirical fact of theirseparateness. A pack of cards, in effect, embodies a much moresubtle interplay of conceptual and physical events than appears atfirst sight to minds habituated to such systems. But, at least itsprinciples of knowability and usability can be made clear by acareful description.

It may seem initially far-fetched to compare a spatial arrange-

ment, like a settlement, with such a system, but there is a way ofseeing them that will make the analogy precise and useful. Take

Page 223: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 223/296

The  spatial logic of arrangements 209

|39t-394041

Fig. 118 A computer-generated 'beady ring*settlement.

for example a computer-generated beady ring form (Fig. 118).

This,  or any settlement, is made up at least of a set of individualcells which, even if initially indistinguishable from another, haveacquired what we might call a  relational identity  by becomingpart of the arrangement. Each cell has, for example, a certainconfiguration of adjacent spaces. If for example we take eachy-space attached to each individual cell as a centre for itsneighbours, the arrangement can be represented as a set of localadjacency ma ps (Fig. 119), wh ich for clarity can then be convertedinto a parallel set of alpha maps (Fig. 120).

Certain rather obvious statements can be made about this set oflocal maps. Each one will have certain relations in common with

all the others: that is, each open cell will be attached to exactlyone closed cell and at least one other open cell. We know thisbecause this is the local rule according to which the arrangementhas been generated. This relation can therefore be said to begenotypical for the whole collection of local maps. However,using the same analogy, other relations which are not the same forall the maps can be said to be only phenotypical, in that they arepart of an actual local spatial arrangement but not a necessarypart.

Seen in terms of its local maps, therefore, the settlement can be

seen as a system of sim ilarities an d differences, that is, as a systemwith both a genotypical and a phenotypical dimension. Thesesimilarities and differences can be seen both spatially and trans-patially. Spatially we are aware of the degree to which adjacentmaps are similar to and different from each other. Transpatiallywe consider the whole system as a set of maps regardless of theiradjacency to each other, as we would a pack of cards.

Now to use the biological term phenotype for these local mapscould be rather misleading, if for no other reason, because itwould be natural to think of a whole settlement as a phenotypeand its comm on structure w ith others - say, in this case with other

bead y ring settleme nts - as the genotyp e. Here we are dealing withthe local relational identity that each individual cell acquires by

Page 224: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 224/296

Fig. 119 Fig.  118 as a set oflocal maps; centred on each

10  The social logic of space

TO  [ X U ,-,-43 4 3 3 Bv-r-,ftj ffij aa tifi tfa

i  ,:• l i s i ^   R t H

Ed

--H-) —h--1—  '—fH—

["tfei'i jynffH rrfagj LJ29 ' H B " 1['.:£•   rTt^i rrtTi tt£] r£D

1 cm ox] m  R;H

I l l l l ^  L* A^ ti ^^ L^ ^™ L^XMXM L b LMA ^^ H^ML iV^U ^^   L I ^ ^ ^ H ^ L M I

rtri ITTI rTti rm cc

being a part  of the wh ole arrange ment, an d not w ith the globalproperties.  We are dealing, in effect w ith a rrang em ental ind i-

viduals, which without their membership  of an  arrangementwould be indistinguishable from each other. To make this distinc-tion clear,  we  shall therefore  use the term p-model  for localphenotypes, that  is, for indiv idua l ce lls seen in terms of theirparticular configuration of local spa tial relations,  and the termg-model  for th e genotypical relations that exist  in the set ofp-models in an arrangement. Thus a p-model refers to all the localspatial relations of a cell, seen from the poi nt of view of that ce ll;while a g-model refers to th e subset of relations that are invariantfor the set of p-models making up an arrangement.

The arrangement can now be represented  as a bi-card system.

Each in divid ual space can be thou ght of as, or as having a bi-cardon which two descriptions are inscribed:  on the u ppe r half the

Page 225: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 225/296

The spatial logic of arrangements 211

H io —• •

6—o • • —o—A i—r>—

31 I32 33T I I34T 35

F i g . 1 2 0 F i g . 1 1 9 a s l o c a l l y

centred perm eabilitymaps.

g-model of the set of individuals; and on the lower half thephenotypical identity of that individual. The master bi-card of thesystem, which of course has a logical rather than a physical

existence, then has the g-model in its upper half and all thedifferent p-models in the lower  half.  Now obviously, these p-model descriptions should not contain unnecessary informationor unnecessary repetition. They should be as compressed aspossible, like all formal descriptions, and g-models will thereforehave a certain length, depending on how many of the possiblerelations of local models are to be specified as necessary rathertha n co ntingen t. Th e list of p-m odels w ill have a certain variety oftypes,  with repetition of a particular type recorded by some markindicating repetition, rather than by the reduplication of thep-model  itself.  Clearly there will be a relation between these two

des crip tions , since the more relations are specified in the g-model,then the less sc ope the re is for variety in the set of p-mo dels. In the

Page 226: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 226/296

212 The social logic of spa ce

computer-generated beady ring we have looked at, the g-model isclearly a relatively short one, in that it specifies only a few of thepossible relations of each cell, and the list of types of p-model iscon seq uen tly relatively long. If we required each cell to obey morenecessary rules of contiguity, then it follows that the set ofp-model types will be correspondingly reduced.

Even leaving aside questions of particular syntactic patterns,the relative length of g-models and p-models is itself one of thefundamental dimensions of our intuitions of spatial order. Forexample, a settlement that appears 'organically grown' rather thandeliberately planned  — beady rings are a good example  — is likelyto appear so because it has a short g-model and a long p-model,'long' in the latter case meaning a long list of p-model types. A'short' g-model means that, as new objects are added to the

scheme, only localised co-ordinations are specified, with theresult that a good deal of the growing global pattern is a conse-quen ce of the contingent relations specified by the rando m process.Another way of saying this would be that the generative aspect ofthe process prevails over the descriptive aspect. What is in theg-model is what is already desc ribed as holding among the objectsin the arrangement. What is generated is a result of the processgoverned by such a description.

But what of the global, emergent structure of the beady ringsettlement - that is, the beady ring itself? The transcription to abi-card system has so far only referred to the local structure, andthis is tantamount to ignoring morphogenesis. How can a mor-phogenetic global event be represented in a bi-card system? Thedifficulty seems consid erable at first because on the one han d thebeady ring is undoubtedly a structure, but on the other hand itseems to be exactly and only a higher-order phenotype. A rathermore searching examination of the difference between p-modelsand g-models seems to be required.

A p-model is, in fact, by any reasonable definition a 'structure',in that it is a definite local org anisa tion of rela tions . The differencebetween a p- and a g-model does not lie at all in the nature of

individu al s tructures, but only in their comparability. A structureonly becomes a g-model when it occurs as a regularity in a set ofcomparable cases. A g-model is properly speaking a g-regularity.This then makes it easy to characterise a structure that has not yetacquired regularity status but is a describable structure neverthe-less: it is what we m ight call a g-singularity. Every p-m odel in thissense can be thought of as a g-singularity. But in the case of thebeady ring there is more occasion to call it that, since from thepoint of view of individual cells in the system, it is exactly as aglobal singularity that the beady ring will appear. This singularitywill then appear in the system as a g-regularity only when it isseen to be an invariant structu re of a family of com parable spatialarrangements. Suppose, for example, we have a landscape com-

Page 227: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 227/296

The spatial logic o f arrangem ents 213

prising a disp ersed set of beady ring settlemen ts, of the same orderof similarity and difference as shown in the original examplesselected. It is clear that not only is the beady ring now a g-model,but also it is a relatively short g-model at the global level, since itrequires only a very basic set of relations to be invariant, andperm its a great deal of variety in the actual p hen otypic al variety ofsettlements. Thus the system works the same way at both the levelof a spatial arrangement and that of a transpatial arrangement. Ateach level a relatively short g-model produces a large equivalenceclass of p-models. For convenience, a system with these generalproperties could be referred to as a p-model system, since itinvests more in a large p-model equivalence class than in a strongg-model structure. But it must not be forgotten, of course, thatevery arran gem ental system has a g-model, even if it is a relatively

short one.Now let us turn to another kind of system, one which on the

surface, while being comparable in size, appears to have virtuallythe contrary properties of the beady ring settlement: the Bororovillage illustrated in Fig. 30. Initially this app ears not only to be avery different type of spatial arrangement, but a different type ofsystem altogether. Apart from its m uch simp ler global form, it hasa kind of complexity completely absent in beady ring structures,in that an enorous amount of purely sociological information isembedded in the spatial arrangement: information about clans,moieties, classes, sex relations, and even cosmologies. In short, it

is the type of spatial arrang em ent tha t leads ma ny to argue that theanalysis of space in its own terms is idle, since all depends on themeanings that particular societies assign to particular spaces. Theanalysis of the arrangement in terms of the bi-card model can, webelieve, demonstrate the opposite: that what appears as thedomination of the system by nonspatial information is no morethan a natural extension of the internal logic of the bi-card modelin a particular direction, that is, the direction of a very longg-model. The semantic illusion is, it turns out, a product of theparadigm w hich views real space and the hum an m ind as separate

domains .The first property of the Bororo village when considered as a

bi-card system is very obvious. The maps of local relations ofindividual cells, that is, the set of p-models, are all the same withthe exception of the men's house in the centre. This means thatthe g-model is of the same length as the p-model, all of whoserelation s are specified. T he g-model is therefore said to be long incomparison to the p-model component of the system, and thesystem is therefore locally a g-model system. The same appears atthe global level. All Bororo villages are based on the same plan,and the global g-model will therefore have a very small equiva-

lence class, just as the local p-models did in the case of the in-dividua l cells. However, this is a relatively unim portant property

Page 228: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 228/296

Page 229: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 229/296

Page 230: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 230/296

216 The social logic of space

inter-relations among objects in the scheme, then each p-modelwill, to specify the invariants, have to specify more and more ofthese relations, as seen from one point of view in the scheme. Inthe limiting case - which the Bororo village approaches - eachp-model must specify necessary relations to every other object inthe complex; and since a p-model specifies not only the relationsof an object to its surrounding objects but also the relationsholding among those objects, then it is clear that in the maximalcase the p-models and g-models will be as long as each other andas non-compressible. In other words, the genetic structure of thescheme as a whole is reproduced in the p-models of every object.Not only has the global scheme acquired more structure by theaddition of noninterchangeability, but also this structure has beenreproduced in the individuality of the constituent objects. The

local form has become a perfect mirror of the complexity of theglobal form.

We thus have a formal way of representing that property inaggregates of requiring each constituent object to obey more andmore rules in relation to other objects, rules of the same generickind as we first introd uced with the asym metric relation. In effect,we have applied a logical com pone nt of asymm etry - noninter -changeability - to the symmetric parts of relational schemes.Because this type of scheme adds structure over and above thebasic spatial configuration represented in the proposition withinterchangeability of symmetric objects, we will call this type offormula transpatial: it adds transpatial rules of correlation to aspatial disposition of objects, and co-ordinates labels, or categor-ies,  as well as spaces.

A special case of transpatiality is where noninterchangeabilityis introduced not between any pair of symmetric objects, butbetween one particular object in the scheme and all other objects.For example, if we take an elementary Z 5  or central spacescheme, (see p. 78) and then require each added object to define asegment of y not in association with all the x-objects in thescheme, but specifically in association with the initial object of

the scheme, x t , then the results will be that the added objects willeventually surround the initial object with a continuous y-spacebetween the single x-object at the centre and the set of x-objects atthe periphery. This gives the form of the Bororo village, with themen's house playing the role of the noninterchangeable initialx-object. This property can be called  duality,  since its effect isalways to select some special object in a scheme, and relate allother objects to it in some way. Duality can exist in all thedistributed syntaxes, but will take a different form in eachreflecting the specific syntactic conditions. In a Z 1(  or clustersyntax, for ex am ple, a dual object will be nothing m ore than some

special object in the vicinity of which all subsequent objects areplaced. In a Z 3, or clump syntax the dual object will be some

Page 231: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 231/296

The spatial logic of arrangements  217

initial object which acts as the seed from which the clump grows.In a Z 7, or ring-street syntax, the result will be, as in the Z 5, asingle free-standing object, but around it will be not only a spacebut also an outer ring, as for exam ple in the well-know n T robriand

village of Omarakana, illustrated first by Malinowski (and subse-quently by numerous other authors).

5  Duality cannot, of course,

be applied to asymm etric nondistribu ted syntaxes since the initialobject in the scheme already has the privileged status of a dualobject, in that it contains all other objects. In fact, just astranspatiality appears to borrow a logical property of asymmetryand apply it to symmetric cases, so duality appears to borrow alogical property from nondistributed syntaxes and apply it todistributed cases.

Whatever form it takes, noninterchangeability has specific

syntactic effects both at the level of the g-model and the p-model:it extends g-model relations beyond those of physical adjacencybetween objects. It literally makes relations work at a distance. Inparallel, it tends also to restrict relations of spatial adjacency. Astrong g-model means literally control of local spatial relations.An object with a strong noninterchangeable category will oftentend therefore to be associated with a lack of other objects in itsimmediate vicinity. The typical noninterchangeable building - achu rch , say, or a major pub lic buildin g - will be free standing an dsurrounded by an open-space barrier. The classical model of atown perfectly illustrates this principle. The strong g-model

public buildings will be located in an area where the spacesappear to surround the buildings, because each is free standing.The strong p-model areas of the town will on the other hand bestrongly contiguous and everywhere define the open space bybeing both adjacent and permeable to it. But this does not ofcourse mean that the g-model buildings have fewer relations.Because there is no limit to the number of transpatial relationsthat can b e adde d amon g a set of objects, we have moved from thesituation in the beady ring settlement where p-models were mu chlarger than g-models to a situation where g-models are much

larger than p-models. Between the two poles we have the systemthat is strongly descriptive but not transpatial: it specifies all thespatial relations between objects, but leaves it at that.

Now with the bi-card model we can define the differencesbetween a deterministic and a probabilistic structure, and indeed,between a more deterministic and a more probabilistic structure.A more de term inistic system is one with a long g-model in relationto the num ber of p-mo dels in the system, that is, a high p roportionof the possible relationships is specified in the genotype asnecessary to the description of the system. A more probabilisticsystem, on the other hand, is one with a short g-model in relation

to the number of p-models in the system, that is, a low proportionof possible relationships is specified, and a large number can

Page 232: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 232/296

218 The social logic of space

therefore be randomised. For a growing system this can beapproximated by the simple dichotomy: short models are proba-bilistic, long models are more deterministic. Short models estab-lish systems which work on  principles  of structure; long models

establish systems which work on the  realisation  of structures.Now if stability in an arrangement is defined as the reproduc-

tion of the g-model structure by description retrieval from andre-embodiment in the p-model structure, the stabilising mechan-isms will vary according to wheth er the system is more prob abilis-tic or more determ inistic. A short model system must continuallyembody its principles in new events with a large equivalenceclass:  a long model system must ensure that events conform toestablish structures with a small equivalence class. This impliesthat the stability behaviours of the individuals composing the

arrangement will also vary. For example, in a system with a longg-model in relation to its set of p-models, each syntactic eventmust obey many rules, including transpatial rules. The extremecase of such behaviour is what we call ritual. To be stable astrongly g-model system must control events. Events that falloutside the prescriptions of the g-model undermine the stabilityof the m odel: they ob scure its structure . For a com plex g-model tobe retrieved as a description, extraneous events must be excluded,since they will confuse th e message. Each event and each relationbetween events must carry as much information as possible.Therefore only the number of events required by the g-model can

be allowed to take place. As a prerequisite of its functioningg-stability requires the elimination of the random. The Bororovillage form perfectly illustrates the properties and problems ofg-stability. In a system with so long a g-model the ad dition of ne wsyntactic objects can only be carried out through the addition ofrelations as complex as those already in the system. Randomaccretion of new objects wo uld q uickly destroy the stability of thesystem, not only in a subjective sense of making it unintelligible,but also in the objective sense of adding objects whose locationsas recorded in the bi-cards were more probabilistic than determi-

nistic.A p-stable, or probabilistic arrangement has the contrary pro-perties. Consider a theoretical surface, an extended version of theZ 3  surface, generated on a computer. The general global form ofthis surface is show n in Fig. 121, that is, a large numbe r ofintersecting be ady rings , each as individ ual in its form as the localconfigurations imm ediately adjacent to each primary cell, yet of thesame generic type. This type of surface can be called a   polyfocalnet, since although the system taken as a whole lacks any kind offocal po int, each p oint in the y considered as a focus sees, both inits neighbourhood and globally, the same kind of system and

therefore retrieves the same kind of description. The set of localp-models for all points on the surface will form a broad equiva-lence class w ith a large degree of phen otypical variety, and so will

Page 233: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 233/296

The   spatial logic of arrangem ents 219

Fig. 121 A large, com pute r-

generated 'beady ring'

surface.

the beads and rings considered as the centre of higher orderp-models. The description that is retrievable from any point in thesystem will therefore be of the same probabilistic type, but alsowith a great deal of local variation.

In such an arrangement each added event has relatively fewrules to obey. Provided it respec ts the rule of local conn ection, therest of its spatial relationships will be determined only bywhatever local configurations happen to be available. In fact, thestable reproduction of the system will depend on there being asufficient variety of these local configurations to embody the

global descriptions of the system. Additional syntactic eventsmust be randomised aside from the rule, since otherwise theglobal descriptions will not be realised and reproduced. In otherwords, while a g-stable system must emphasise structure, ap-stable system must equally emphasise randomness and varietyin order to maintain stability in its description. Moreoever,whereas a g-stable system had to control and exclude events inorder to clarify its description, a p-stable system must generateand include events in order to clarify its description. A g-stablesystem will, therefore, of its morphological nature tend to investmore and more order in fewer and fewer, and more and more

controlled events, whereas a p-stable system will require moreand more relatively uncontrolled events in order to realise itsdescription more and more in the spatio-temporal world.

Page 234: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 234/296

220  The social logic of space

From points within the two types of system local conditionswo uld also appear very different. A strong g-model system like theBororo village has the important property that, as we have seen,all its local p-models (with the exception of the one drawn fromthe men's house') are spatially identical. But they are alsotranspatially identical, since in spite of each being noninter-changeable with all the others, each local model contains all thetranspatial structural information present in the global system, bybeing requ ired to relate in a certain way to each other object in thesystem. In contrast, the local models in a p-stable system needonly have the minimum common structure to guarantee theconsistency of the local syntactic rule, and no transpatial struc-ture at all. Local conditions in the two types of system willtherefore appear different from the point of view of control. From

a point within a g-stable system boundary control would appear tobe strong, whereas in a p-stable system it would appear to beweak. The latter would admit, and even require, a good deal ofmovement across local boundaries, and these boundaries arelikely to be shifting and locally unstable, while retaining theglobal, statistical pattern . The former w ould make control of localboundaries one of the primary means by which descriptioncontrol was achieved. Uncontrolled movement across localboundaries would tend to destabilise, whereas in the latter case, itis an important aspect of stability.

The systems will also respond differently to the elimination ofsyntactic events. Random elimination even of comparatively largenumbers of objects from a p-stable system will have relativelylittle effect on the stability of the description, provided it is largeenough in the first place. A p-stable system generates, and canregenerate o rder sim ply by contin uing to work. A g-stable system,on the other hand, depends on order embodied in the system to agreater extent, and tolerance of the random elimination of eventsis corre spon dingly low. Loss of events can damage the des criptionof a g-stable system, since far more is invested in each syntacticevent and in the spatial and transpatial relations of that event.

These basic dimensions of arrangement dynamics illustrate inprinciple how  pattern  and the  control of pattern  are inter-relatedin syntactic processes. At root the differences come down todifferences in the degree to wh ich an un folding process is subjectto genetic control. These differences of degree lead to pathways ofdevelopment which appear more and more as polar opposites, orinversions', as the system becomes large and complex. It is asinversions that these dimensions have been frequently observedby anthropologists and sociologists. For example, Durkheim'sdistinction between 'mechanical ' and 'organic' solidarity seemsrelated to the differences between g-stable and p-stable pathways

of growth.6  Mechanical solidarity, predicated on identity of localmodels, or segments (to use the accepted term) coupled to a

Page 235: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 235/296

The spatial logic of arrangem ents 221

principally expressive form of embodiment, encapsulates themain aspects of g-stability; organic solidarity, predicated on localdifferences in instrumental forms of embodiment, encapsulatesthe main aspects of p-stability. Durkheim, of course, thought ofthe two forms of solidarity as inversions, and as empiricalproperties of societies. As such, the concepts have a heuristicrather than analytic value, since most social systems exhibit atevery level both types of solidarity. Conceived of as pathwaysarising from differential patterns and degrees of restriction on anotherwise random process, and as internal morphological dimen-sions of the arrangemental model, the concepts acquire a moreformal structure and, as we hope to show, analytic potential.

Just how fundamental these different pathways are to theevolution of syntactic arrangements can be even more simply

illustrated. It has already been said that the two pathways arisefrom different kinds and degrees of restriction on the underlyingrandom process, giving rise to radically different relations be-tween p- and g-models. Suppos e now we minimise both. First, theminimisation of both implies that p- and g-models are equal toeach o ther. Th is can therefore be w ritten: (p =  g)m in . It is clear thatwe have in another form the formula for the least-ordered syntac-tic process, that is, the random process that provided the mini-mum set-up for an arrangement, in which each syntactic event isind ep en de nt of all others tha t take place on the surface. If we thenwrite (p = g)max ,  then it will refer to the case where the local

p-models and the g-model are the same size as each other, but aslarge as possible. This is exactly what was meant by a descriptivesystem, that is, one that contained as large a genetic spatialdescription as possible for that number of syntactic events, butwithout the addition of transpatial relations. Large village greens,ideal towns and such, all therefore belong to this pole. As manysyntactic events as possible, all featuring in each others' localmodels in the same way, constitute a unified arrangement with acommon focus.

The rem aining types of surface are described by varying p and g

in relation to each other. (p>g) that is, 'p greater than g\ impliesthat the set of p-relations grows larger than the prescribedg-relations, and this is the case with generative arrangements,such as the beady ring or the polyfocal net. (g>p), or 'g greaterthan p', implies the opposite: that many more genetic relationsexist in the system than spatial relations; and this is the case witha transp atial system , such as the Bororo village. It only rema ins tobe said that, in all the elementary schemes in the generativesyntax,  [p^g]  for that num be r of objects.

These four polar types of system - the random, the generative,the descriptive and the transpatial - all derived from analysis ofthe relatio ns b etwe en p- and g-m odels, can be tied back to some ofthe most common concepts currently in use to describe social

Page 236: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 236/296

222  The social logic of space

systems. The random system itself is not, of course, so much asystem as the pre con dition for having any kind of system at all. Agenerative system, on the other hand, is that least-ordering of therandom system, such that a system which some describablesyntactic ordering can be said to exist: that is, it characterises themost basic levels of patterning of encounters and relations thatensures that, even in the ways in which individuals ensure theirbiological survival and reproduce themselves, some structure isperpetuated through time which outlasts those individuals. Gen-eration can therefore be associated with the most basic levels ofproduction in society. Description and transpatiality are thendifferent mo des of elaborating the basic system in order to en surethe reproduction of the system. Description means, properlyspeaking, the  control of descriptions.  All societies have mechan-

isms, formal or informal, for the conscious control of de scription s.Insofar as they are open-ended and modify descriptions wecall them politics; and insofar as they are concerned with theimplementation of description control we call them law. Ingeneral, description control refers to what is commonly calledthe 'juridico-political superstructure' of a society. Transpatiality,on the other hand, refers to the other commonly acknowledgeddimension: the 'ideological superstructure'. Ideology is not aboutthe conscious control and modification of descriptions, but aboutthe unconscious enactment of descriptions. Transpatiality meansbuilding into patterns of space and action complexes of noninter-

changeable relations which ensure, through the ritualisation oflife,  the reproduction of the systems of categories required by thatsociety.

The arrangemental model thus ends by reiterating commonlyheld views about the fundamental structuring mechanisms insocieties. But it does not reiterate them in the same form. It doesnot, for example, require us to believe that the metaphor of baseand s upe rstru cture refers to definite and separate entities. It show sthem to be only different mo dalities for handling the repro duc tionof society, hardly more, in fact, than different forms of emphasis

inherent in the need for the most elementary relations of thediscrete system to reproduce themselves.

Page 237: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 237/296

The spa tial logic of encounters : acomputer-aided thoughtexperiment

S U M M A R Y

The argument then proceeds by showing that, using this framework, a

naive computer experiment can generate a system with not only some ofthe m ost elemen tary prop erties of a society, but also requiring some of itsreproductive logic. These simple initial ideas are then extended to showhow certain fundamental social ideas, especially that of class, may begiven a kind of spatial interpretation through the notion of differentialsolidarity - it being argued that spatial form can only be understood inrelation to social solidarities. Fu rtherm ore it mus t first be unde rstood thatsocieties are never one single form of solidarity but relations betweendifferent forms of solidarity. Space is always a function of these differen-tial solidarities.

A naive experimentConsidered as an arrangement, then, spatial order can begin toacquire some markedly sociological and semantic properties.Asp ects of w hat w e might be temp ted to call the social mean ing ofspace can be shown to be, after all, a matter of how relationalpatterns are produced, controlled and reproduced. The wordmeaning seems inadequate to describe such cases. It seems to benot merely a reflection of society that appears in space, but societyitself.

But what is it about society that can require complexity and

subtlety in its spatial order? The answer seems to require theproposition that society is of its nature in some sense a physicalsystem. We may have already assumed as much in arguing thatthe p hysica l arrang eme nt of space by societies is a function of theforms of social solidarity. This could only be the case if socialsolidarities already possessed, in themselves, intrinsic spatialattributes that required a particular type of unfolding in space.

In what sense, then, could this be the case? One answer isobvious. What are visible and therefore obviously spatial aboutsocieties are the encounters and interactions of people. These arethe spatio-temporal realisations of the more complex and abstract

artefact that we call society. Now encounters and interactionsseem to exist in some more or less well-defined relation to

223

Page 238: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 238/296

224 The social logic of space

physically ordered space. The observation that this is so provides,in effect, the principal starting point for an enquiry into therelations of society and space.

Now if the spatial realisations of society are well ordered insome way, then obviously the sources of that order must be a partof whatever it is that we call society. Two definitions thereforesuggest themselves: solidarities are the organising principles ofencounters and interactions; and encounters and interactions arethe space-time embodiment of solidarities. In other words, en-counters and interactions can also be seen as a morphic language,capable of forming arrangements, and taking on their dynamicpropert ies.

This immediately presents a serious problem for our presentefforts to establish a theory of space and society. It means that,

properly speaking, we need to be able to analyse the principles ofdifferent forms of social solidarity in such a way as to understandhow and why they require different unfoldings in space. This isnot only beyond the scope of the present work, but also beyondthe capability of authors who lack the skills and concepts thatanthropologists and sociologists would bring to bear on such aproject. What is proposed here, however, is a little more modestand more tractable. As with sp ace, we propose to turn the problemround and begin, not by examining solidarities and asking abouthow they might determine space, but by addressing ourselvesonce again direct to the spatio-temporal world, in this case

encounter systems as we see them, and asking in theory whatorganising p rincip les could give rise to the kinds of difference thatare commonly observable. We have in mind such manifest andgeneral differences as differences between the organisation ofinformal and formal encounters, differences in encounters andavoidances within and between sexes and classes, and the differ-ences between encounter patterns in urban and non-urbansocieties.

Even with these more limited aims, what follows may appear alittle strange, and should not be misunderstood. Because there is

relatively little data available of the kind that would be needed tomake a proper investigation of encounters as morphic languages,we are forced to proceed in a largely deductive way. Our aim istherefore less to establish what is the case, but what in principlecan be the case. How could en coun ter system s acquire differentialproperties, such that they would have different manifestations inspace? Because our aims are so limited, we may begin by a verysimple, though possibly bizarre experiment, the intention ofwhich is simply to show that even in an arbitrary and oversim-plified physical representation of systems of encounters, prop-erties may arise which in some ways are strikingly like some of

those possessed by real societies. The experiment - really acomputer-aided thought experiment - is therefore carried out

Page 239: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 239/296

The spatial logic of encounters 225

without any regard whatsoever for the historical or evolutionaryorigins of human societies. We are only interested in how prop-erties wh ich app ear to us as being social in some sense can arise ina physical system.

Suppose, for example, we interpret the 'clump' generativeprocess for encounters by the simple procedure of substitutingpoints and lines for spaces and contiguities as the basis for ourmorphic language, with points standing for individuals and linesconnecting them for relations of encounter. As before, let there betwo types of object: dots representing men and circles represent-ing women; and let a line joining two objects stand for somethinglike 'repeated encounters requiring spatial proximity'. In otherwords, we are interested not just in any encounters, which areassum ed to be hap pen ing rando mly in any case, but in encounters

which are durably reproduced between individuals as a result ofspatial pr oxim ity. Lines, in effect, re prese nt enc ounte rs of which adescription has been retrieved and embedded in the system.

Let the basic unit of aggregation be a man-woman dyadrepresented by a dot joined to a circle placed unit distance aparton a regular grid, with the line joining the dyad representingrepeated encounters, perhaps of a sexual nature. (The regular gridenables the system to be represented clearly and simply, although,as with settlement generators, the outcomes do not depend on thegrid - they do, however, depend on some reasonable interpreta-tion of regular spacing, which has the effect of keeping mentowards the outside of groups.) Let the rule of aggregation be thatcircles in dyads are joined to other circles, again placed unitdistance apart, but that dots are not joined together. Instead, thepositions of the dots are randomised, apart from being attached toa circle as a member of a dyad. In other words, we havecompletely reproduced the structure of the beady ring process,with the exception of the rule forbidding vertex joins. It might, infact, be best to visualise the process as a spatial process, with thespaces defined by the presence of an individual.

Now let some initial dyad be labelled generation 1, then let the

dya ds generated imm ediately adjacent to generation 1 be genera-tion 2, and so on, meaning that the lines joining circles togetherrepresent repeated encounters requiring spatial proximity be-tween mothers and daughters. In effect, therefore, we are ex-perimenting with a system with two kinds of relation of repeatedencounters requiring spatial proximity: those between men andwomen, and those between mothers and daughters - but notbetween mothers and sons or fathers and sons.

We now have a kind of clump syntax system in which thecircles behave like open cells and the dots like the closed cells.The initial stages of a typical computer experiment are shown inFig. 122, and a much later stage in Fig. 123. One of the effects ofthis system is that a whole new family of potential relations of

Fig. 122 The initial stagesof a computer experimentin aggregating dyad s.

Page 240: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 240/296

226 The social logic of space

c3o i l

Fig, 123 A later stage of theexperiment of Fig. 122.

spatial proximity has been generated, relations for which there isa perfectly normal term: neighbours. These proximity relationsare over and above those built into the system from the outset asrules relating affinity and descent to encounter frequency; theyhave arisen as a spatial by-product of the physical realisation ofthe system - that is, they are a produ ct of the arrangemental natureof the system. Now as we all know, relations of neighbours thatarise in this w ay can also be the basis for repeated e ncou nters of adurable kind, and we may therefore reasonably think of adding to

the system lines representing such links if we wish to representthe whole thing as an encounter system. The arrangement ac-

Page 241: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 241/296

The  spatial logic of encounters 227

quires interesting properties as soon as we bias the selection ofthese ne ighbo urs in favour of contacts within th e sexes rather tha nbetween the sexes - you might say that we have allowed sexualjealousy to play a role in restricting the durability of neighbourcontacts between the sexes but not those within the sexes. If weadd to the system all lines joining immediately within-sex neigh-bours for both men and women then the result is Fig. 124.

If we then disentangle the male and female components of thesystem and print them out first separately, then together, but

without Carriages', certain interesting morphological trendsappear, in particular, that both locally and globally women's

Fig. 124 Fig. 122 withneighbour relations added.

Page 242: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 242/296

228 The social logic of space

Fig. 125 The women'snetwork of Fig. 124.

Fig. 126 The men'snetwork of Fig. 124.

Page 243: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 243/296

Page 244: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 244/296

Page 245: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 245/296

The spatial logic of encounters  231

The se are interesting pr ope rties, but they are still purely sp atial.We have yet to add a transpatial dimension by allowing points inthe system to have labels. In fact, each point is already labelled:with a generation number. Suppose descriptions are retrieved of

thes e. It can easily be seen that relatively few g eneration-mates arealso neighbours. From any point in the system, male or female,retrieving a description of a generation set means recognising agroup that is locally represented by a few members but which iscon stituted largely across space. Without adding any thing at all tothe system, the objective conditions exist to retrieve descriptionsof generation sets as transpatial groupings with representatives ineach local complex. In other words, we have already an arrange-ment with both spatial and transpatial groups.

Suppose we then extend the scope of description retrieval in

the sy stem by allow ing it to app ly to another property: the lines ofdescent from some particular ancestor. Suppose, for example, thateach of the circles of generation 4 is given a different label, andthese labels are transmitted to descendents as part of their localdescriptions. Note that in adding labels nothing new and ex-traneous has been introduced into the system. Lines of descent areperfectly objective pr oper ties of the system. But strangely enou gh,in spite of their 'objectivity' they become of morphologicalinterest chiefly b ecause they ap pear differently in the descrip tionsof different components of the system when considered as aself-reproducing arrangement. By this we mean, very simply, that

for the circles, that is the women, the description of the descentlabel is automatically correlated with at least some repeatedencounters in the local group, and the label can therefore be saidto be em bed ded in and re-affirmed by norm al encoun ters; whereasfor the dots, or men, the descent label is not correlated withencounters, and will therefore only be reproduced if some extrades cription is added to the system . If such a label is introduced forthe m en th en two further poin ts of interest arise. First, it will be ama trilineal label - that is, it will label men accord ing to their lineof descent through their mothers - in spite of being a mechanism

for reinforcing the male component of the system; and second, itwill be a transpatial label, in that the members of the label groupare more likely to be dispersed in a number of spatial groups thanto be densely prese nt in a few. In other wo rds, we have a system inwh ich not only would encou nter patterns differ between m en andwomen, but so also would the principles of within-sex solidarity.Men would require more transpatial encounters and a strongerlocal g-model in order to reproduce a level of description whichfor women arose through a relatively localised p-model system.

Now this m ight appear to put wom en in a relatively weaker -because more localised - position than the men, given the same

am oun t of descriptio n in the system for both sexes, were it not forcertain other features of the system that can arise equally objec-

Page 246: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 246/296

232 The social logic of space

Fig. 129 The growth

process of Fig. 128 taken at

3 points up to generations

{a )  generations 9—12 Women (b )  generations 9 -12 Men

O O

(c)  generations 15-18 Women

• A.

(d)  generations 15 -18 Men

Page 247: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 247/296

The spatial logic of encou nters 233

Fig. 129  (cont.)

o-o

o

( e ) g e n e r a t i o n s 2 1 — 2 4 W o m e n

2 ~

}

if )  generations 21 -2 4 Men

Page 248: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 248/296

234 The so cial logic of space

Genera-tionband

1 - 4

2 - 5

3 - 6

4 - 7

5 - 8

6 - 9

9-12

12-15

15-18

18-21

21-4

No. ofdyads

1 0

1 3

1 7

1 9

2 1

2 3

3 4

5

5 8

5 3

4 3

No.  of clumps

1

1

1

2

3

3

4

7

7

9

9

1

1

1

2

3

3

4

7

9

1 1

1 1

5

6

7

8

8

1 1

1 4

1 9

2 2

2 4

2 1

Average clump sizes

1 0

1 3

1 7

9 .5

7

7.7

8 .5

7 .3

8 .3

4 .8

4 .8

1 0

1 3

1 7

9 .5

7

7.7

8 .5

7 .3

8 .3

4 .8

4 .8

2

2.2

2 .4

2 .4

2 .6

2 .1

2 .4

2 .7

2 .6

2 .2

2 .0

Mean RA ofpoints

• o

0.244

0.161

0.234

0.274

0.306

0.295

0.272

0.287

0.241

0.347

0.363

0.160

0.225

0.184

0.197

0.218

0.216

0.201

0.204

0.193

0.227

0.240

Mean RR of points

o—• • o

0.371

0.312

0.302

0.288

0.341

0.271

0.328

0.326

0.280

0.263

0.271

0

0

0

0

0.126

0.075

0.059

0.036

0.057

0

0.019

0.467

0.381

0.310

0.283

0.271

0.294

0.336

0.336

0.324

0.346

0.372

Fig. 130 Num erical data forthe experiment shown in

Figs 122-9.

tively. Take for example the three women's groups in generations5-8. The two groups on the left side both share a commonancestor in that both are immediately descendant from the samegeneration 4 circle. In other words, these two groups have atransp atial id entity as groups, which can only be reinforced by theinternal spatial and transpatial solidarity of the groups. Theright-hand group, on the other hand, has the contrary property: itis descended from two ancestors, the merging having beenproduced by the tendency of the women's transgenerationalnetworks to form rings. In other words, we have a local systemthat reproduces locally the description of two lines of descent,both of which are also likely to be reproduced elsewhere. Theeffect of both of these phenomena will be to shift the women'ssystem in the direction of a noncorrespondence system in which

p-model solidarity is naturally extended across space from onelocal group to another by linking categories together. The polyfoc-al net effect is, as it were, created at two levels not one: not onlywill the internal relations within the local group tend to take thatform, but so also will the more global relation across spacebetween local groups and sub-groups.

Societies as encounter probabilities

All these arguments, however, are purely formalistic and clearlydepend on physical conditions that are unlikely to be realised. Allwe have shown is that social-type structures can in principle arisenaturally in an arrangemental system. To explore this approach to

Page 249: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 249/296

The spatial logic of encounters  235

modelling solidarities further and make it more lifelike, let usassume not that well-defined networks and spatial groups exist,but only that on a surface composed of a number of individualsthere is a certain probability that subsets of individuals tend to

group their encounters more with each other than with others.This will have the effect of dividing the surface up into a series ofwhat might be called semi-islands with denser relations withinthe semi-islands than between them. The degree to which dif-ferential rates of encounter occur within, as opposed to betweenisland s m ay be assigned as a probability attached to the restrictionthat produces the semi-island in the first place. Semi-islands willapproach full islands, entirely separated from other islands, whenthe probability of within-island encounters approaches 1. 'Semi-islandness' will disappear altogether as the within and between

probabilities converge.If in this system we take the po int of view of any individ ual, th e

field of encounters will be divisible into two kinds: first, intra-semi-island encounters, which occur with relatively high frequen-cy and in a dense way, in that there is likely to be not only anencou nter betw een a a nd b and between b and c, but also betweena and c within a reasonable time-span; and second, inter-semi-island encounters, which are less frequent and sparser in that, ifthe individual a of A semi-island encounters b of B, and b of Bencounters c of C, then the probability of an encounter between aof A and c of C within a reasonable time-span is much lower due

to the relative infrequency of inter-island encounters.Considered from the point of view of the arrangemental dyna-

mics, and partic ularly from the po int of view of the stability of thearrangement, some interesting consequences follow from the verynature of this arrangement. As has already been suggested, theintra-semi-island encounter set will not require a strong g-modelsince the local field of encounters is, by the arguments alreadyadvanced, dense and rich enough to work on p-model stability,provided it is big enough and provided the encounter rate ismaintained. But the inter-semi-island encounter system, being

sparser, is less likely to be workable on the basis of p-modelstability. It would follow from this that there might well be ageneral tendency for intra- and inter-semi-island encounter sets totend to different poles : the intra-set wou ld be maintainable on thebasis of p-model stability and would not therefore, other thingsbeing equal, need to introduce strong g-model ordering; whereasto the extent that the system as a whole, that is, as a set ofsemi-islands, retained a stable description across space, theinter-semi-island encounter set would tend towards more struc-ture ,  that is, towards extending the scope of the g-model.

This is, of course, really an elaborate way of saying that there

are formal reasons for expecting social relations to become moreformal as they become less frequent; and this has again, other

Page 250: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 250/296

236 The socia l logic of space

things being equal, an obvious spatial reference, in that the highfrequency and density of encounters within the semi-island couldfollow only from spatial compression unless there were restric-tions or rules preventing it; and likewise the relative infrequencyand sparseness of encounters in the inter-semi-island set couldfollow from spatial distance. It might even be reasonable to thinkof dense encounter sets as spatial groups and the sparse encounterset as a transpatial group, regardless of the degree to which theyform a separate group. We can expect that spatially organisedencounter sets, wherever we find them, will tend to be p-model,that is, lacking in strong formal order and relatively unrestricted,and that transpatially organised encounter sets, wherever wefind them, will tend to be g-model, that is, more selective, moreformal and more structured.

Th is suggests that one of the princip al d imen sions of variabilityof social existence may be founded on considerations that are atonce formal and spatial. On the one hand, there is a naturalcorrelation between the spatial and p-stability, giving rise to theconcept of intimacy, and behaviour that is normal in an everyday,practical sense, rather than 'normative' in the sense of beingco nc ern ed to re-affirm global categories of the society; on the oth erhand, there is the natural correlation between the transpatial andg-stability, giving rise to the concept of ceremony, and behaviourthat is normative rather than merely normal. This duality need befounded on nothing more metaphysical than the relative encoun-ter rates at different physical distances, given also the need toma intain the social system at both a local and a more global level.It is a consequence of the fact that societies are, after all, specialkinds of physical systems: more precisely, perhaps, strategies toovercom e their ph ysical n ature . If societies by their very existencehave overcome space, in that a coherent object is constructed outof entities that remain spatially discrete, then they also acquirestructure through the means available to overcome space atdifferent levels. Fundamental properties of societies can in thisway be seen as prod ucts of the und erlying mod el of what a society

is ,  rather than in terms of some hypothetical set of psychologicalpredisposi t ions.

This basic relation between space and society has often beenobserved by anthropologists. One of the most explicit versions isthat of Elman R. Service in his introd uctory text to the study of theevolution of primitive societies. Speaking of the central Austra-lian Aborigines he writes:

Those very central Australians who have such a formalised and explicitsocial organisation in all aspects are those whose demographic arrange-ments of residential groups is the most variable by season and year,whose membership is ordinarily the most scattered and whose associa-tion is the most fortuitous . . . A further interesting characteristic is that aregular prog ression from the rich, rainy, coastal areas with their large and

Page 251: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 251/296

The spatial logic of encou nters 237

relatively sedentary social groups to the desert interior with its widelyscattered, small, wandering population is equally a progression fromleast formality and complication in the former to the greatest in the latterarea . . . When subsistence factors cause band members to be widely

scattered so that the residental factor is weak then the band comes to bemore like a sodality with insignia, mythology, emphasis on kinshipstatuses and so on, which make the band a more coherent and cohesiveunity.

1

An economic basis for the duality is suggested by  Wolf,  amongothers, through his distinction between the 'caloric minimum',that is, the extent to which the products of human labour aredirected to the biological survival of the individual, and the'ceremonial fund', that is the proportion of the labour product thatis given to the intensification of relationships that ensure the

continuation of society at a more global level than the basiceconomic groups:

Even where men are largely self sufficient in food and goods, they mustentertain social relations with their fellows. They must, for example,marry outside the household into which they were born and thisrequirement means that they have relations with people who are theirpoten tial or actual in-laws . . . a marriage does not involve merely thepassage of a spouse from one household to another. It also involvesgaining the goodwill of the spouse to be and of her kinfolk; it involves apublic performance in which the participants act out, for all to see, boththe coming of age of the marriage partners and the social realignmentsthat the marriage involves; and it involves the public exhibition of whatmarriages - all marriages - ought to do for people and how people oughtto behave once they have been married. All social relations are sur-rounded by such ceremonial, and ceremonies must be paid for in labor, ingoods, or in m oney. If men are to participate in social relations, therefore,they must also work to establish a fund against which these expendituresmay be charged. We shall call this the ceremonial   fund.

2

However, it is not difficult to point to cases where the simpleassoc iation of cerem ony and formality - g-model intensification -with transpatial relations does not seem to hold; for example,cases where transpatial relations are relatively informal, and cases

where local spatial relations are highly formalised. But all is notlost. The underlying model has further resources. To draw theseout it is best to return once again to the foundations.

The basic distinction between spatial and transpatial integra-tion linked the two concepts together, in that spatial integrationwas the pre-condition for transpatial integration - that is to say,some m ean s of identifying objects is prior to their formation into aclass - but also every sp atial integration creates the possibility of atranspatial integration. Thus when we form an arrangement,creating out of what was an unarranged set of individuals aquasi-spatially integrated complex (that is, a spatial arrangement),then this also can be the subject of transpatial integration. Unlessthe arrangement is a singularity there will be other such g-similar

Page 252: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 252/296

238 The social logic of space

(i.e. sharing the same g-model) arrangem ents, together with w hichthe arrangement itself forms a comparable, though as yet un-arranged set. However, it is already the case that the constituentobjects of the arrangement - the individuals - are still themselvescapable of transpatial integration with individuals in otherarrangements since they will still be similar to other individualsin different sp atial regions, wh ether thes e individu als are likewisearranged or not. In other words, out of any arrangement we createtwo levels of transpatial integration: the big level of the arrange-ment itself, and the sm all level of the indiv idual cons tituents. Theformation of the larger scale set implies the formation of thesmaller scale set.

However, in any such system, in addition to forming a transpa-tial unarranged set across arrangements, the individuals are also

locally arranged; and since the arrangements are of a comparabletype (this enables us to form them into a set in the first place), thenindividuals in different local arrangements will be comparable toeach other by sharing comparable positions within their localarrangements. This will give rise to a form of transpatial integra-tion based not simply on membership of comparable arrange-ments, but also on comparability of local models within thearrangement. This is a transpatial integration of an altogetherhigher order. If transpatial integration has cognitive significancefor individuals, then the more complex transpatial integrationspossible by transpatially linking individuals similarly located

within arrangements must be a more potent example of the samephenomenon. It is transpatial integration plus arrangement. If weallow that transpatial integration is a means by which humanbeings identify with each other - not yet arrangementally, butconceptually - then the more such individuals are locallyarranged, and the more there is correspondence of arrangementalpositions, then the stronger we may expect this transpatial in-tegration to be from a psychological point of view. Being apatriarch, for example, with its strong local model, is a morepotent basis for transpatial integration with others than simply

being a father.If arrangement potentially strengthens transpatial integration

from a description retrieval point of view, then this in turnpotentially strengthens spatial integration within the localarrangement. Transpatial integration implies that each member ofa local system will have, in addition to his local p-model, atranspatial label derived from the transpatial set. This labelreinforces the local description and makes the local system workin a two-level way. Each set of local relations is, as it were,reinforced at the conceptual level by the transpatial labels in-volved. As transpatial models become stronger, local individuals

and encounters become more recognisable.Now suppose we complicate the matter a little by combining

the two previous ideas, and imagine an arrangemental set-up in

Page 253: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 253/296

The spatial logic of encounters  239

which the initial collection of individual men and women havehigher rates of within-sex encounters than between-sex encoun-ters.  This could result, for example, from a system in which menformed co-operative hunting parties while women stayed in

relatively less-mobile groups. This would have an immediateconsequ ence according to the theory: within-group relations, thatis , relations am ong me n or relations among women , would tend tobe more informal and p-model than relations between the sexes,wh ich being sparser wou ld tend to become more formal and m oreg-model.

Let us add the com plication that the encounter rates within thesexes also differ on the spatial-transpatial dimension. Suppose,for example, that as a result of greater mobility, the bias in favourof intra-semi-island encounters, as opposed to the inter-semi-

island encounters, was less for men than women, even allowingthat both were still biased in the same direction. The implicationof this would be that the relative solidarities of each of thesub-groups, within the semi-island would follow a differentdynamic. Women's solidarity would become more p-model,men's less so; the former because women's encounter sets wouldbe realised to a higher degree within the domain of the semi-island, the latter because men's would be realised more outside it,and would therefore be more diffused and sparser. In this case,differential e ncou nter ratios on the spatial-transpatial dimensionsfor different sub-groups of individuals would be expected to lead

to divergent principles of description retrieval for the two groups.The control and nature of descriptions in arrangements has

already been associated with what we normally call politics. Herewe have differential descriptions and differential principles ofembodiment and retrieval for the two sub-groups of individuals inthe society. In our hypothetical society the solidarity of women isachieved initially within the spatial group through encountersthat are dense and normal rather than sparse and normative, andits stability arises in a p-model way. Women's solidarity thendiffuses across space through the polyfocal net of category rela-

t ions,  creating a two-level system that will work homogeneouslyprovided the category relations across space are also realised in ap-model way - that is, provided women are reasonably mobile.

Men's more 'clubby' solidarity, in contrast, is founded initiallymore in the transpatial domain, through encounters that aresparser and normative, and it stabilises in a g-model way. It willthen generate as a two-level system to the extent that the transpa-tial solidarities are allowed to diffuse locally, by forming localcollections or 'clubs'. Women's solidarity, therefore, by its veryformal nature would emphasise non-exclusiveness, growth, andeasy access and egress, where as m en's s olidarity wo uld, of its very

nature, emphasise exclusiveness, restriction, symbolic ordering,and controls on access and egress.

It is then the basic dialectics of the process that the penetration

Page 254: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 254/296

240 The social logic of space

of 'normativeness' and the g-model ordering into the spatialdomain, that is, in this case into the domain of women's p-modelsolidarity and normalness, will weaken women politically andstrengthen men; whereas the extension of p-model ordering andnormality into the transpatial domain will strenthen womenpolitically and weaken men. Likewise the reduction of the size ofthe spatial group will make g-model penetration into the spatialdomain more likely; whereas expansion of the spatial group willmake p-model penetration into the transpatial domain morelikely.

Thus by considering encounter systems as arrangements, wecan in a fairly n atu ral w ay arrive at a system w ith differentialsolidarities  for men and women, that is with women beingmembers of a local-to-global system in which kin and neighbour-

hood relation s are used both to create strong local groups and alsoto project wider networks across space; and men being membersof more contrived associations or clubs that are realised to agreater or lesser extent in the local system.-The degree to whicheither system succeeds in being a two-level system is likely to bean ind ex of the strength of the solidarity. For wo men , localisationis weakness; for men the failure to find a local realisation isweakness. Inequalities will exist to the extent that one is a morepowerful two-level solidarity than the other.

Differential solidarities seem to us to be a very general propertyof societies. It is also a property that is of fundam ental impo rtancefor the understanding of space, since space is likely to be orderedin the image of a relation between solidarities, whether this is arelation of inequality or equality. This is no less true of contem-porary societies, and other class societies, than it is of simplersocieties, where the relation between male and female solidaritiesis perhaps the dominant force shaping space.

This is because class relations can themselves be seen, for thepurpose of spatial and arrangemental analysis, as to do withdifferential solidarities. From the point of view of spatial arrange-ment, a class society might be held to exist when subsets of

individuals dependent on the same productive basis have diffe-rential forms of solidarity, and these different solidarities are real-ised to a radically different degree through the expropriation ofthe ceremonial fund in the interests of description of one solidar-ity rather than the other. In other words, a dominant class willrealise the description of its forms of solidarity to a greater degreethan a dominated class, and this superior description will inevit-ably involve a larger spatial scale, and a stronger local mode l. Thetechniq ue of ascendancy will then be to maximise one descriptionand minimise the other, thus involving space pervasively in thedialectics of inter-class relations.

Spatially this will mean that a dominating class will alwaysseek to use space to reduce the degree of arrangement of the

Page 255: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 255/296

The spatial logic of encounters  241

dominated class, principally by fragmenting it into as smallgroups as possible, while maximising the spatial scope of its ownnetwork. Th us un der some circumstances the relation of men andwomen could itself be seen as a class relation. Differentialsolida rities, it wo uld seem , are at once part of the mean s by whic hgroupings of individuals form themselves into that larger systemthat we call society, and also the means by which that globalsystem is unba lanc ed by the formation of those global inequ alitiesthat we call social classes. However, whatever form they take,differential solidarities are a crucial component of spatial order:the form this r elation takes is a major clue to the spatial nature ofreal societies.

Page 256: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 256/296

8

Societies as spatial systems

S U M M A R Y

These concepts are then applied to certain societies whose spatial form iswell documented, following which a general theory of the different

spatial pathways required by different types of social morphology issketched. The aim of this theory is to try to relate the existing, well-kno wn eviden ce into a coherent framework as a basis for further research,rather than to establish a definitive theory.

Some societies

With these concepts in mind, we may now look briefly at anumber of societies that differ strongly both in terms of the waythey order space, and in terms of their spatial logic as socialsystems. Obviously, within the scope of this book, this cannot be

an exhaustive exercise. All we can do at this stage is to take anumber of well-known cases where authors have described spa-tial properties of societies in such a way that they can betranscr ibed into the con cepts w e have used. In doing so we are, ofcourse, adding nothing to the findings of these authors. We aremerely using their work to show that the arrangemental model canprovide a means for moving from social commentaries to analysisof spatial form. We may begin with the two well-known ethno-graphies: Fortes

1*

2 on the Tallensi of Northern Ghana, who live in

dispersed compounds; and Turner3  on the Ndembu of Northern

Zambia, who live in small circular villages.

Tallensi compounds differ considerably in size and complexity,but always are based on a strong underlying model, which can beseen in the gamma map of the simpler of the two compoundsshown in Fig. 131.

Globally the compound is governed by a sequence of spacesfrom the carrier to the he art of the co mp oun d. T he first of these isa space imm ediately outside the en trance, marked by a shade treeand ancestor fetishes. The second, immediately inside the en-tranc e, is a cattle yard, w ith bu t one dwe lling giving onto it, that ofthe headman. This is the headman's personal space, although he

rarely uses it other than to keep possessions in. More important,the hut is also said to be the dwelling of the headman's ancestor

242

Page 257: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 257/296

Societies as spatial  systems 243

1 Men's social area.

2 Patriarch's cattle yard.

3 Room for adolescentboys.

4 Room of ancestralspirits.

5 Granary.

6 Women's courtyard.

7, 8, 9 Patriarch'smother's rooms.(Senior woman)

10 ,  11 , 12 Patriarch'swife's rooms.(Junior wo man)

Fig. 131 Sim ple andcomplex T allensi

8 9 10 U  12 com poun ds, after Fortesand Prussin.

0 10 20 30 40 50

spirits. Both the space outside and the space inside the com poundentra nce are strongly identified w ith males, and this identificationis in both cases supported by strong transpatial categories, in onecase the ancestor fetishes, in the other the ancestor spirits. Onlyby passing through this sequence of spaces can one arrive at thefirst space identified with women, and this is invariably thesub -com pou nd of the senior wife. Just as the male courtyard is themost powerful space governing inside to outside relations, so the

senior wife's sub-compound is the most powerful space gov-erning inside to inside relations, in that at this point the com-pound changes from a unipermeable sequence form to a treeform. In effect then, relations of men to women are governedby the outside to inside sequence form, and relations amongwomen are governed by the internal tree form. Noninter-changeability is added to this asymmetric nondistributed treestructure in that, as the compound expands towards the morecomplex form, the domains of individual wives have a specificlocation in the compound according to seniority. Various hierar-chical social practices - one must greet the senior wife first on

entering the wom en's do main - are associated with this noninter-changeability in the space, just as others - the women cook and

Page 258: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 258/296

Fig. 132 Tallensilandscape, after Prussin.

244 The social logic of space

eat as separate nuclear groups rather than co-operatively - areassociated with the segregative tree syntax  itself.  The granary isthe focal point of the compound, coming between the men's andwomen's domains. Powerful sanctions govern the dispensing ofgrain, however, and women may not do it independently of thehead ma n. The word for compo und and for the people in it are thesame word in the Tale language, and strong rituals and beliefsgovern the location of houses in relation to the ancestors of theheadman. When sons set up their own households - the Tallensiare both strongly patrilineal and patrilocal - the same basic spatialpatte rn is followed, initially by add ing a new section with its ownentrance to the parental compound, but later, marking full inde-pendence, independent of the parental compound, though prob-ably still in the same vicinity. The cultural investment in the

compound, and also in the locality, is aided by strongly de-veloped beliefs and ritual practices attaching individual lineagesto specific locations.

How ever, in spite of the strong spatiality of the Tallensi cultureand religion, there is little spatial organisation visible above thelevel of the comp ound . On the contrary, the com poun ds appear tobe spread across the landscape in a completely random array, asFig. 132 shows. Two factors mitigate this, both difficult to per-ceive in a purely visual way. First, although the compounds arerandomly clustered in a particular region, sub-groups of com-pounds are identified as settlements and distinguishable fromeach other, just as the compounds are, by intervening no man'sland; and there is also a similar sub-clustering of small groups of

/>•   'Ik 7*

h0  Compound

200 1000

feet

Page 259: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 259/296

Page 260: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 260/296

Page 261: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 261/296

Societies as spat ial  systems  247

ensures that the strongest grouping in the society tends to be theuterine sibling group. It is this group that normally founds avillage, and it is the same group that often fissions from an

existing village. There is a very high divorce rate among theNdembu: women go back to their brothers, taking their childrenwith them. Since descent is matrilineal, the ties of mother andchild, and of that group back to the mother's sibling group inanother village, are stronger than the ties of father to child, andstronger also than the residential ties that group the familytogether in the paternal village. The result is a society with a highdegree of mobility of personnel among villages.

Socially speaking, this mobility and tendency to break up is thedominant principle, in total contrast to the Tallensi with theirelaborate lineage system erected on a strongly territorial basis.

The Ndembu do have a level of spatial organisation above that ofthe village, the vicinage , but it is as unstab le and as variable in itscomposition and personnel as the village  itself.  However, Tur-ner's conclusion regarding the relation between the local andglobal level of the society is clear, and repeated several timesthroughout his text: 'Conflicts which split sub-systems tend to beabsorbed by the widest social system and even to assist in itscohesion by a wide geographic spreading of ties of kinship andaffinity.)

6  Or: (We have also noticed how the unity of the widest

political unit, the Ndembu people, gains at the expense of its

significant local un it, the village . . . fission and mo bility, wh ilethey break up villages interlock the nation.' 7 On the mechanics offission Turner is even more explicit: 'After the feelings of animos-ity associated with the initial breach have died down, each has aspecial claim on the hospitality of the other, the members of bothexchange long visits, and each may serve in turn as the basisof the other's hu nting exped ition.)

8

The contrast we hope to draw is now becoming clear. TheNdembu represent the type of case where the social mechanismsensure that the transpatial encounter rate is maximised in ap-model way. The high degree of mobility in the population

ensures a high rate of direct, relatively improvised contact be-tween individuals and sub-groups living in different semi-islands.The semi-island effect is therefore minimised; and as the formaltheory predicts, the strength of the transpatial g-model is corres-pondingly reduced. This is a case, therefore, where the p-modelstability penetrates outwards from the spatial group and eats intothe g-model at the inter-semi-island, or transpatial level. This isthe opposite of the Tallensi where the extreme 'staticness' of thepopulation is associated with a very high level of local develop-ment of a g-model, coupled to a strongly noninterchangeableritual (that is ritual with a large g-model), which requires thepresence of specific sets of persons to carry out specific series ofactions without which the ritual will be ineffective.

Page 262: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 262/296

Page 263: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 263/296

Societies as spatial systems  249

the political and ritual weakness of the superficially more-orderedvillage as compared to the transpatial polyfocal net.

If the Ndembu system projects a symmetric and distributedsyntax into the transpatial level, the Tallensi does the opposite: itprojects an asymmetric and nondistributed syntax into the localspatial group, tending to keep this small in order to keep thestructure clear and controlled. There are two aspects to theargument. First, with the Tallensi the dominant political level isthe largest spatially continuous group, in this case the compounditself.  If this group were other than strongly ordered, then amulti-layered system could not be erected on it, since hierarchyimplies noninterchangeability. The small, strongly ordered, re-latively isolated group is the natural corollary of a multi-layeredsystem. At every level, it must segregate and render its component

individuals noninterchangeable in order to preserve the princi-ples of the system. Second, the predominantly territorial nature ofthe lineage and clan system can be seen in a similar way, as thedomination of the spatial by the transpatial. Whereas clans andsolidarities are often highly spatially dispersed, thus providing across-cutting network of transpatial relations finding its realisa-tion within each spatial group, with the Tallensi the system isreversed, and space at the higher level is made to serve thehierarchical, transpatial lineage system. There is a strong corres-pondence between transpatial category and spatial group. Thisthen finds its expression in the dispersed clusters of the Tallensilandscape. Dispersion preserves the local g-model as the domi-nant morphological principle.

It might not be too far-fetched to suggest a relation between thispolarity and the fundamental structure of biological kinship. Inthe basic biological system necessary for reproduction there areboth symmetric and asymmetric relations in a precise syntacticsense: the relation of siblings is symmetric in that, other thingsbeing eq ual, the relation of a-sibling to b-sibling is the same as therelation of b-sibling to a-sibling; the same is true of the relation ofspouses (of course we can introduce asymmetry into either, but in

the pure state this is not the case), whereas the relation of parentand offspring is syntactically asymmetric: the relation of a-parentto a a-offspring is not the same, but the inverse of the relation ofa-offspring to a-parent. It seems unsurprising, therefore, that theNdembu system with its symmetric and distributed syntax is builton the basis of the symmetric sibling relation, whereas thehierarchical lineage system of the Tallensi is constructed from theasymmetric parent-chi ld relat ion.

It has already been suggested that the relation of men to womencan, and often does take the form of a class relation, depen ding onthe degree to which the different principles of solidarity withineach of the sexes are differentially realised by the global arrange-ment of the society. The Tallensi appear to be such a case. The

Page 264: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 264/296

250  The social logic of space

elaborate transpatial ritual structure erected on the basis of thepatriarchial homestead is almost exclusively a male domain. Bymeans of its elaborate system of roles and offices, which pene-trates every aspect of culture and much of daily life, men achieve

a degree of arrangement, or solidarity, for which there is nocounterpart for women. On the contrary, women remain isolatedwithin the homestead, subject to innumerable rules and restric-tions in their daily lives. To drive the point home, the wives of agiven patriarch do not even form a cohesive group within thecompound, in the sense perhaps of a day to day co-operation inhousehold tasks. Instead there is rivalry, and spatial subdivision,reinforced by a hierarchical scheme of relations among themrealised through noninterchangeability and correspondence. Thetendency among Tallensi women is to become unarranged as a

group, and by contrast arranged only with respect to their localmenfolk, and then in a clearly subordinate role.With the Ndembu, the situation differs in two critical ways.

First, the ritual struc ture, w hile elaborate, is not exclusive to men.Women also participate strongly. And as would follow ritual isspatialised, strongly tends to p-models, and occurs in the village,not in some corner of the landscape. Second, the high degree offemale mobility between spatial groups clearly compensates forthe men's attempts to dominate the spatial group through thedominance of the hunting ideology within the village space. Inthis case, the basis for women's solidarity is much more closely

compa rable to the me n's. The relation between the sexes does nottherefore tend to become a class relation in the sense in which wehave defined it.

Now let us consider a third, again very different example: thesegment of the Hopi society living in the pueblo of Oraibi at thetime of the map made by Mindeleff (Fig. 134).

10  The map shows

the physical layout of the settlement (though without the tieredstructure rising from the ground-plan) and the physical distribu-tion of the c lans (localisation of gentes). At the level of the clan (asalso at the level of the 'phratry' which groups clans together,

mainly for ceremonial purposes) the arrangement is a singularlyclear instance of the principle of noncorrespondence, in that eachclan occupies a series of sites dispersed without discernible orderthroughout the settlement. Now from the point of view of theencounter system, clans have three important attributes. First,they are often the official holders of land and various importantpractical and ceremonial rights; second they are an importantmedium through which the extensive ceremonial life of thepueblo is conducted; and third, a principle of classifactorykinship applies within a clan, so that any individual will havemothers, brothers, and so on in all parts of the settlement. This

has the effect that the transpatial system is constantly generating alarger network of encounters and reinforcing them with affective

Page 265: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 265/296

Societies as spatial systems 251

Fig. 134 The pueblo of

Oraibi, after Mindeleff.

Parroquet Reed

Oraibi plan, also showing localisation of Gentes

mm   wm  aawq rasM rasra  t i i EfiYoung  Bow  Rabb it Bear Coy ote Lizard Eagle Reed Badger  Sun  Sand

corn

ties  and  practical constraints.  The relations  of the  spatial and

transpatial system in effect ten d to globalise the enc ounter system,and create encounter density at the level of the settlement  as a

whole .  The same  of  course applies  to  relations between settle-ments, since each clan  is represented in at  least two and usually

several villages.The local clan groups shown  on the map are  matrilineages,

Page 266: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 266/296

252  The social logic of space

usually made up of three or four households, each consisting ofsix or seven persons. The household is defined by the presence ofa husband - obviously from another matrilineage, and indeedfrom another phratry - and the core membership of the matri-

lineage is a group of women descended from a single immediateancestress. The principle of classifactory kinship also applieslocally, and it may be expected that it will be reinforced by thefrequency of contact within the local encounter space. The localencounter space of the matrilineage women is therefore verydurable, but there is not a fixed association between a matri-lineage and a position in the settlement. On the contrary, the localconfiguration constantly changes as matrilineages grow andshrink.

Since space and category are also interchangeable at the local

level, then the transpatial category is not part of the g-model forthe settlement. At both spatial and transpatial levels, therefore,the socio-spatial system constituted by Oraibi is distributed (eachgroup is constituted equally by several different but equal sites),symmetric (the principle of classificatory kinship is the additionof symmetric components without the addition of rules of struc-ture),  noncorresponding between spatial groups and transpatialcategories, and p-m odel at both levels, in that the system works ina den se rather than controlled way at both levels. The system is infact a very clear version of the two-level polyfocal net postulatedearlier as the elementary form of global arrangement.

Two important aspects of the encounter system of Hopi societycan, we believe, be clarified as necessary consequences of thesemorphological principles. The first is the relative equality be-tween men and women; and the second, the prevalence at everylevel of mixing mechanisms outside the relatively short g-modelfor the two-level polyfocal net. The two are interconnected.Mixing mechanisms are social practices that have the effect ofmultiplying the number and range of encounters generated by aparticular arrangement. For example, classificatory kinship is amixing m ech anism , but so also is the habit of male clan dancers to

dance in all the kivas of the other clans; and so also is the Hopihabit of eating household meals close to the open doorway of thehouse so that people passing can also take part in the meal. Eventhe fact that much of Hopi ceremony is carried out within thesystem of public spaces of the pueblo can be seen as a mixingmechanism. There are are also ceremonies and aspects of cere-monies which are segregated and hidden from the more generalview, but we may associate this smaller range with the g-modelcomponent of the system, and the public ceremonies with the -even more important - p-model dimension. The presence ofmixing mechanisms in a society always has the same morpholo-

gical principle behind it: to maximise the system of encounters atboth the spa tial and tra nspa tial levels, in order to make the systemwork on p-stability rather than g-stability.

Page 267: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 267/296

Societies as spatial  systems 253

The relative equality of the sexes results from the workings ofthis principle at both the spatial and transpatial levels. Womendominate the solidarity of the spatial group, while men dominatethe transpatial groups. However, the fact that the system runs bythe expansion of the dense encounter zone from the local to theglobal level - this is wh at a p-m odel system essen tially is - mean sthat the spa tial solidarity and th e transpatial solidarity are ofcomparable strength. Although there is differential solidaritybetween men and women (men are strangers in their spatialgroups, but associate with each other in clan kivas), the twodomains are closely tied together by the general p-model princi-ple,  which is the principle of a spatial group. Thus the women'sform of solidarity prevails throughout the system, even thoughmen do have a strong hold on ceremonial life. It would seem

natural, within this framework to see the extraordinary intensityof collective cer emo nial life among the H opi as a mean s of mak ingthe p-stability effective at the global level, by maximising theglobal encounter system within and between individual villages.

Thus ,  in almost every respect, the Hopi are unlike the Tallensi,and mo rpholog ically th e most basic of these differences is that theTallensi are a correspondence society while the Hopi are anoncorrespondence society. The contrast with the Ndembu ismore subtle. In both there is a relative equality of the sexesbecause the differential principles of solidarity between men andwomen are more or less equalised. But with the Ndembu the

women have the advantage at the transpatial level, through awomen-centred density in the global network realised through thehigh divorce rate and the matrilineal principle. Among the Hopithe women have the advantage at the local level, primarilythrough the matrilocal principle and the extension of the women-based spatial group as the foundation of the global system. Thusthe Ndembu men order their space in a rather strong localg-model, with local sanctions against women; but these are ratherineffective, since the women's transpatial solidarities enable themto be relatively free of local sanctions from the men. In contrast

the Hopi order a settlement which is highly distributed and highlyopen, with minimally complex dwellings, this being the idealform for maximising p-model probabilistic local encounter net-works and realising p-stability. Thus Ndembu women are weaklocally and strong globally, and are matrilineal, meaning that thewomen's focus is transpatial rather than spatial; whereas the Hopiwomen are strong locally but are weaker globally, through thespatial matrilocal principle.

These examples suggest that it is useful to make a cleardistinction between the morphological, or arrangemental, princi-ples of a society and the actual  social and spatial  mechanisms bywhich these principles are realised. This permits a form ofcomparison, and a means of identifying similarities and differ-ences that is at once more concrete than the customary method,

Page 268: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 268/296

254  The social logic of space

and more abstract, since it deals with the dynamic principlesbehind particular structures, not simply the comparison of thestructures themselves. Take, for example, the forms of communityreported in the East End of London by Wilmott and Young and

others.11  Although the relationship between mothers and daugh-ters is crucial in the construction of social networks in thesecommunities, there is no question of rules of matrilocality orma triliny, any m ore than th ere are formal clans or phra tries. Usingthe arrangemental method, however, it can be shown that evenwithout these strong rules, nevertheless the system resembles thetype of two-level polyfocal net, with its characteristic p-stability,that characterises the Hopi. The encounter space of an individualin this system has a very dense local network, which includessome k in, but also a large num ber of others who are familiar only

through proximity and frequent contact. The kinship system,comparable in its scope to the local matrilineage in the Hopicommunity, in this instance works transpatially, rather in themanner of the clans in Oraibi, although of course much lessformally and much less strongly. Nevertheless, the essentialfunction of the kin netw ork is to create encounter s at a larger scalethan the immediate locality, where the mix of kin and neighboursprevail equally. As a result, an individual will encounter the localnetwork of kin at a relatively greater distance. The system istherefore always tending to grow towards the larger system, aswith the Hopi, rather than to consolidate the local group.

The two systems can also be compared on the ceremonialdimension, and on the man-woman dimension. The characteris-tic cerem onial forms are the 'party ' of all available kin, wh ich is atrans patial event, draw ing in even remote kin from outlying areas;and , on very special occasion s, the 'street party', which is a spatialevent linking together a local network of streets, although in afocal rather than bounding way. On the man-woman dimensionagain there is relative equality resulting from the more or lessequal development of the women-based spatial solidarity of thelocal networks, spreading, using the extended kin network, to the

transpatial level, and the male solidarity based on the pubs andclubs,  with equally well-developed arrangements for the circula-tion of members through different pubs in the locality and evenfurther through sporting encounters, and so on. The pubs areanalogous to the kivas of Hopi society, in the sense that theyoperate not o nly in a localised way, but as a means of generating ahigher order system.

The same type of morphological principles, though with a verydifferent social mechanism, is illustrated by the relation betweenthe division of labour and the wider social system in a Europeanmedieval town. Guilds are transpatial categories functioning first

and foremost in a dense encounter zone in which they arenecessarily mixed. In this sense they are analogous to 'dispersed

Page 269: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 269/296

Societies as spatial systems  255

clans', but more powerfully so, since the dispersion in most cases

goes down to the level of the individual, rather than the local

group. The transpatial categories themselves are strong systems,

with rules for entry and rules for conduct. Even so, their primary

function is one of making a transpatial level for the two-level

polyfocal net created by the intense and spatially inter-dependent

working patterns of the medieval town. The important thing is

that the transpatial system is, first, defined by what happens in the

primary encounter zone; and second, it is fully dispersed in the

primary encounter zone. In an important, if limited sense, there-

fore, the medieval town also has aspects of the noncorresponding

two-level polyfocal net.

According to Nakane, virtually the contrary principles appear

to be the case in Japanese society.12

 Here the categoric identifica-

tion is always with what she calls the 'frame' group of anindividual rather than the 'attribute' group; that is, with the

spatial, functionally inter-dependent group, rather than with the

transpatial, or dispersed group:

A man is employed  in a  particular occupation and is also a member of a

village community. In theory he belongs to two kinds of groups: the one,of his occup ation (attribute) and the o ther of the village (frame). W hen thefunction  of the former is the stronger an  effective occupational group is

formed which cuts across several villages   . . . where the coherence of the

village comm unity is unusually strong, the links between members of th eoccupational group are weakened  and, in extreme cases, the village unit

may create deep divisions among members  of the  occupational group.This  is a  prominent  and  persistent tendency  in  Japanese society  . . .

throughout Japanese history, occupational groups such as a guild, cross-cutting various local groups  and  institutions have been much lessdeveloped  in  comparison with those  of  China, India  and the West. It

should also be remembered that a trade un ion  in Japan is  always formedprimarily by the institution, such as a company, and includes members ofvarious kinds of  qualifications  and  specialities, such as  factory workers,office clerks and engineers.

13

T h i s s e e m s to be ano th e r spec i f ica t ion  of a  sys t em based  on the

p r i n c i p l e  of  c o r r e sp o n d e n c e b e t w e e n sp a t i al g r o u p  and  t r anspa -

t ia l ca tegory,  and in  such cases  we  h a v e c o m e  to  expect tha tg r o u p s w i l l be h i e ra rch ica l ly o rgan i sed , t ha t  the in t e rna l s t ruc tu re

of groups wi l l  be  h i e ra rch ica l , t ha t bou nda r i e s wi l l  be  s t rongly

m a i n t a i n e d  and  tha t  the  enco unte r space wi l l  be  pene t ra t ed  by

s t rong g -mode l ru l e s  of an  a sy m m e t r i c  and  n o n d i s t r i b u t e d k i n d .

A c c o r d i n g  to  Na k a n e , t h i s  is  p rec i se ly  the  case  at all  leve ls  of

organ i sa t ion  in  Japanese soc ie ty . Japanese soc ie ty  is, she  a rgues ,

b a se d  on a  ' ve r t i ca l p r inc ip l e ' bo th  at the  leve l  of the  in t e rna l

s t r u c t u r e  of the  (re la t ive ly c losed) group,  or at the  leve l  of

r e l a t i o n s b e t we e n g r o u p s .  The ve r t i ca l p r inc ip l e  is  i l lust ra ted  by

d i a g r a m s  on the  l i nes  of  F ig . 135 , showing tha t Nakane means an

a s y m m e t r i c  and  non d i s t r ibu ted gene ra to r . Th i s p r inc ip l e  is sopervas ive tha t ,  F ig. 1 35

Page 270: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 270/296

256 The social logic of space

In everyday affairs a man who has no awareness of relative rank is notable to speak or even sit and eat

14

a n d

a group which has neither internal hierarchical order nor the superior-inferior type of human relations still demands that its members giveunilineal participation and develop their own closed community ... if ahomogeneous group adds members from outside itself or experiencesexternal influences internal differentiation is the normal outcome. In thecase of a group based on individual specialisation the addition ofmembers with identical or similar specialisations will result in thedevelopment of vertical relationships, since ... no two persons canoccupy the same rank.

15

The correspondence principle which, so we believe, underliesthe vertical principle applies all the way through Japanese socie-

ty, and even constructs the relation of household group andkinship group in a way that is virtually the opposite of the EastEnd case:

the human relationships within this household group are thought of asmore important than all other human relationships. Thus the wife anddaughter-in-law who have come from outside have incomparably greaterimportance than one's own sisters and daughters, who have married andgone into other households.

16

Notes tow ards a general theory

These pairs of contrasting examples could be multiplied, but thedetailed enu me ration of ethnogra phic cases is beyond th e scope ofthis primarily theoretical exposition. Even so, it seems possible tosuggest a limited number of generalisations linking the sociallogic of spac e to the spa tial logic of society, arising pa rtly from theevidence but also perhaps partly from the logic of thearrangemental model. One fundamental morphological generatorappea rs, as we have said, to be the correspondence or noncorres-pondence of spatial group and transpatial category. If the transpa-tial category corresponds to the spatial group, then the members

of that group will not be arranged w ith others across the landsc apeby virtue of the existence of categories, but must be combinedwith others as a whole, by some kind of superordinate logicexisting over and above the system of spatial groups. In such casesthe boundaries of the spatial group must be strong, as must theinternal structure of the group, and this implies a strong localg-model, consequently strong boundary controls, a more determi-nistic rather than probabalistic local encounter space, and prob-ably a controlled and relatively exclusivist ceremonial space.

If the transpatial category and the spatial group are in anoncorresponding relation, the logic of the system works in theopp osite w ay. Memb ers of spatial groups are already linked acrossthe landscape by categoric mechanisms which also ensure recog-

Page 271: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 271/296

Societies as spatial  system s 257

nisability in the local encounter space, that is, by a logic that isalready embedded in the system. The local group cannot be eitherstrongly structured or maintain strong boundary controls, since

either w ould work against the natura l tenden cy of the system to bestable through the density of events in the encounter space, bothat the local and c erem onial level. The p-m odel logic of both levelsof the system requires a probabilistic, rather than a deterministiclocal encounter space, and a form of ceremonial that maximisesthe density of transpatial encounter events, and therefore tendsto be inclusive rather than exclusive.

Under what circumstances do these two different pathwaysappear? The answer would appear to lie in the problem ofinequaJity and, in particular, the form of inequality that wasidentified broadly as class inequality, that is, where different

sub-groups - say men and women - had differential forms ofsolidarity and different degrees of access to the means of repro-ducing descriptions of the principles of solidarity. But it is notsimply that the correspondence model tends to prevail insocieties with such inequality and the noncorrespondence modelin societies without it. It is more that the correspondence model isthe means by which the inequality of groups is institutionalised,by being incorporated in a strongly controlled local g-model, suchthat the less privileged of the unequal partners appear to repro-duce and even to desire the conditions of their own inequality.The correspondence principle, in effect, is a way of makinginequality disappear, while at the same time giving it institution-al form. Thus in a Tallensi compound the norms of wifelybehaviour within the determ inistic spatial order of the com poundwill in effect be a primary means by which the inequality ofmen and w om en is realised. Perhaps in a way we have uttered nomore than a truism: the strategy of domination is to isolate andseparate the dominated, and to establish local behavioural formsthrough which the system reproduces itself effortlessly.

The distinction between correspondence and noncorrespond-ence systems tells us something of what the system is like locally,

and how it is experienced as an encounter system. But it does notoffer any account of the global structure of the system, that is ofthe relatio n be twee n so cial and spatial form in the fullest sense ofthe word. To sketch a possible way in which this relation might bemade, we must take into account two more factors: first, thequestion of growth - how systems produce, control, and repro-duce structure as they become larger; and second, the tri-partitedistinction between generation, description and transpatiality,which was suggested as an approximate arrangemental counter-part of production,  politics  and ideology.

In brief,  the argument is that if all arrangements have both dis-crete spatial groups an d tran spatial groups , then it follows that theymust have both local and global types of order. As arrangements

Page 272: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 272/296

258 The social logic of space

grow in size, then the global order will come to be more andmore important, since there is more to be held together by thatorder. But there are different pathways of growth, and the differentpathways require different degrees of emphasis in different

dimensions of the model. The lawfulness of the relation betweensociety and space considered globally will then be something likethe lawfulness of these different pathways.

In princip le, we may conceive of two fundam entally differenttypes of growth in an arrangem ent. In the first type, objects -whether cells or individuals does not matter - are added to thesystem without increasing the size of the spatial groups; in thesecond, objects are added by increasing the size of the spatialgroups. The first leads to a dispersed landscape; the second to aclum py landscap e. The first we might call the pathway of tran spa-

tial  growth, since any arrangement will be concerned principallywith making links across intervening space; the second, thepathway of  spatial growth, since the links of added objects will, inthe first place, be with more or less continu ous aggregates. Neitherwill, of course, ever be free of the other. There will always bespatial groups of some size, even in the most transpatial system;and there will always be transpatial links of some kind, even inthe largest spa tial clu m p. Each type of system w ill, therefore, be atwo-level system, with both spatial and transpatial components.Moreover, as the systems grow larger, then they can also begin tolook more like each other, in that a dispersed landscape can

become denser under the effects of aggregation, while a clumpylandscape will need to invest more in links between clumps as itbecomes larger. The differences between the two pathways willalways be differences in the degree of emphasis given to differentstructural principles.

According to the elementary logic of arrangements, a system onthe transpatial pathway ought to tend locally to a more g-modelmode of operation, implying groups that are small and structured,and a system on the spatial pathway, to a more p-model mode ofoperation, implying groups that are less controlled for growth and

less internally structured. Expansion of the two types of systemwill then present different kinds of problems if the principles ofeach system are to be preserved. The transpatial system must havemechanisms to add new members to the structure of the localgroups as they appear, and it must have mechanisms to segment,in order to prevent the local groups from becoming too large. Thespatial system must increase the amount of description in thesystem as it grows - that is, it must ensure that the spatialaggregate has som e global structu re, as well as a local one - and itrequires mixing mechanisms to ensure that the system does notdegenerate into local g-model groups. All of these requirements,

of course, assume that the system is both growing and relativelyfixed to certain locations. A system tha t is small and mobile co uld

Page 273: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 273/296

Societies as spatial systems  259

opera te in a more or less p-mod el kind of a way, in spite of relativedispersion, with mixing mechanisms and the periodic formationof larger groups.

It is, of course, the structuring of fixed space that allows bothsets of requirements to be realised in the two types of expandingsystem. The need for strong categoric control and the need forsegmentation can both be realised by using the  inside  of theboundary or, if needs be, the inside of a system of boundaries,which construct, as the system expands, a system of related andcontrolled categories. The need for integrating or mixing mechan-isms and increased description can be realised outside the bound-ary, through the elaboration of the system of continuous externalspace, into a system with more axial and convex organisation as itgrows. To the extent that spaces inside boundaries have categoric

order, they will be more deterministic than exteriors, carryinginformation about who can be where, and what can occur indifferent locations. In contrast, insofar as an external domain isordered, it will be a more probabilistic domain, generating morespaces and encounters than it describes. The latter is therefore aspace of description retrieval, whereas the former is a space ofdescription embodiment and enactment. The latter is akin, there-fore,  to the integrated space of Durkheimian organic solidarity,while the former is akin to the segmented space of Durkheimianmechanical solidarity.

The logic of the boundary is therefore to construct a different

mode of arrangemental integration of its two sides: on the inside,there is the space of relations of categories, that is, of ideology:while on the outside, there is the space of generation andnego tiation, or, as one m ight say, of po litics. The latter is the sp acein which social relations are produced: the former, the space inwhich they are reproduced. Something like the 'central paradox'of space follows from th is: each type of arrangemental integration,or solidarity, depends on the realisation of principles whichwould put the other at risk. The appearance of large numbers ofunstructured events (space or encounters) in a strongly struc-

tured , or g-model system will und erm ine its form of stability; lackof sufficient numbers of the same types of event in a lessstructured, or p-model system will undermine its stability. Like-wise, too mu ch structure will underm ine a p-model system, whiletoo little will undermine a g-model system.

This socio-spatial duality is fundamental, but it is not all thatexists.  The system needs to operate at two levels, not one. Theduality we have described so far is a property of a socio-spatialsystem  insofar as it  constructs a  global order based on its localelements;  that is, from the dom ains controlled by indiv idua ls. Thetwo path wa ys are those of a system con sidered as a local-to-global

phenomenon. But there will also be a global-to-local system,which exists over and above the domains of individuals, and

Page 274: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 274/296

260 The social logic of space

which expresses itself in some system of boundaries and spaceswhich have a more collective or public nature. The men's hut inthe Ndembu village, the earth shrines in the Tallensi landscape,and the kivas in the Hopi town, are all examples of suchstructures, as are the public buildings and churches of the morefamiliar urban landscape, or the 'totemic landscape' of the Austra-lian Aborigines.

17  Now the esse nce of the global-to-local system

is that, in comparison with the local-to-global system, its logic isreversed. The external relations of buildings are used to constructan ideological or conceptual landscape, a space whose relation todescription is one of representation, but not of control; while theinteriors are used to define a domain in which descriptions arecontro lled. Th e former are, in the first instance , shrines; the latter,in the first instance, meeting places. In all the cases we have

looked at, the distinction between local-to-global structures andglobal-to-local struc tures h as been the means whereb y differentialsolidarities are articulated and related to each other.

These two principles can be summarised in a more abstractversion of the diagram drawn in the Introduction (see below) and

exteriors -

interiors,-

local-to-global

R E T R I E V A L

of descriptions

E M B O D I M E N T

of descriptions

global-to-local

REPRESENTATION

of descriptions

C O N T R O L

of descriptions

from this, a more general and comprehensive principle may besketched: the more the system grows both spatially and trans-patially, then the more the logic of the system will tend to run

from global-to-local, rather than from local-to-global, and themore the logic of the system will follow the reversed form. The'state '  can be seen, in these arrangemental terms, as existing notwhen an ideological landscape is defined by conceptual relationsbetween spatial groups, but when the control of descriptions,which under more primitive conditions ceases at the limits of thespatial group, is projected across the landscape and forms discretespatial aggregates into a continuous political territory.

The more this is the case, that is, the more the global-to-localprevails over the local-to-global, then the more we can expect thelandscape to be dominated by a system of ideologically related

structures, and the more there will be interiors which exist tocontrol transactions. Under these conditions, the distinction

Page 275: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 275/296

Page 276: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 276/296

Postscript

S U M M A R Y

The th eory, h owev er, sketchy as it is, does perm it an ou tline of a theory ofcontemporary space which is sketched here and related to basic differ-

ences in social formations in the advanced industrial countries. Theprincipal aim of this argument, again, is not to establish a definitiveaccount, but to provide a coherent model for linking together and makingsense of the 'obvious' phenomena of contemporary space, phenomenawhich are normally given a simple functionalist or economic explana-tion. However, modern space is, it is argued, while different in kind, afurther instance of the principle that spatial organisation in society is afunction of differentiation principles of social solidarities in relation toone another, whether this is a complementary relation or, as now, a classrelation.

The social logic of space todayIt has been said that the art of mathematical proof lies in finding aframework within which what one wants to say becomes nearlyobvio us. The sam e might be said of theories. A good theory s houldrend er 'ne arly obvious* intercon nection s betwe en observable factsthat had previously appeared puzzling or anomalous. What ispuzzling about the situation today is why we should haveundertaken such extensive revisions to urban and locality struc-tures,  when the effects of the new forms of spatial arrangementappear, at best, as no improvement and, at worst, as sociallydamaging. It is often said that changes in the urban surface werethe result of the invention and spread of the motor car. This isuntenable for one very simple reason: the morphological pro-totypes of the new urban surface w ere developed fifty years beforethe inv ention of the motor car, and by the time whe n the motor carwas only beginning to penetrate the more affluent regions ofsociety, the diffusion of the new prototypes was already underway. What is interesting about the motor car explanation is that itis yet another instance of our pervasive tend ency to give technolo -gical and functional explan ations for processes that are essen tiallysociological.

If we were able to take a bird's-eye view of recent physicalchanges in the urban surface with the principles of syntactic

262

Page 277: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 277/296

Page 278: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 278/296

Page 279: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 279/296

Postscript  265

conflict between the needs of the productive sector and those ofthe reproductive sector is one of the principal foundations of thespatial dialectics of Western society.

We may n ow come back to the sam e point by a slightly differentroute . In comp arison with classic urban society, a major structuralchange in the productive sector effected by industrial bureaucracyis the separation of the worker from his tools. The tools, thephysical means of production, move into the possession ofcapital, and in fact acquire a new name: fixed capital. A secondmutation is implied by this. When the worker is a specialist whoow ns his tools he utilises this sp eciality to make relations with hisfellow men that are essentially symmetric and distributed. Thebasic form of an instrumental division of labour is symmetric anddistributed, in that inter-dependence guarantees that asymmetry

and hierarchy have no productive basis for development. Rela-tions between specialists are essentially lateral ones, and do nottend to the formation of asymmetric structures. Under capitalismthe princ iple is changed. W orkers do not make relationships w itheach other. Each individual makes a relation with a factory ownerwho employs him. These are vertical relations. The elaboration ofthis principle naturally and necessarily tends to be a system inwhich asymmetric and nondistributed relations are the syntacticprinciples of the system.

Now the asymmetrical nondistributed systems - think, forexam ple, of a simple tree diagram as in Fig. 71 on p . 132 - havecertain formal p rope rties. First, there are no lateral connections atall in the system. At each level all relations between symmetricunits exist only by virtue of the unit which controls both. Second,the system is extremely fragile. Removing any single relationshipin the system partitions the whole system into at least twodisconnected segments. Thus in any such system there is a threatof structural risk attached to each asymmetric relationship. But atthe same time the integrity of the system depends on theseasymmetric relationships. This is one basic reason why asym-metric nondistributed relationships tend to be reinforced with

g-model apparatus: noninterchangeable statuses, insignia, hierar-chical rules, and so on. These are a means of shoring-up thesystem against the natural tendency to fragment. By contrast ap-stable symmetrical and distributed system does not requiresuch em bellish me nts. Its relative stability against fragmentation isguaran teed by the size of the system, its openess to new add itions ,its number of linkages, and its tolerance of loss.

Now of course the entire logic of workers' movements is basedon remedying this lack of symmetric and lateral relations in thesystem, since while the asymmetric nondistributed system re-mains, each is alone and each is powerless; but by establishingsym me tric relations a nd acting corporately, the logic of the systemis overthrown, and the control of the many below by the fewer

Page 280: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 280/296

266  The social logic of space

above is re-established. However, the w hole bias in the system ofproduction, which after all creates the everyday reality in whichwe all live and w hich is therefore very hard to question, is againstthis d evelo pm ent. It can only result, therefore, from the deliberate

and artificial fostering of a solidarity consciousness that over-comes the divisive effects of the system. These mechanisms forsolidarity consciousness are what we call trade unions.

How ever, although the social logic of the system n aturally te ndsto reproduce itself in everyday life, there is a major paradox. Theexigencies of production require not only the social separation ofworker from worker, but also the spatial aggregation of those sameworkers. In terms of the model, this is already a danger to thesystem, since the dense spatial aggregation of people tendsnaturally to the p-model system in which symmetric and distri-

buted relations predominate, and these threaten the syntacticprinciples of the system. They also threaten it politically. Thesystem only works well if there is no large scale symmetricsolidarity at the lower, and especially at the lowest, levels. Spaceis in this sense the paradox of capitalism. Fundamentally, this iswhy the nineteenth-century dreams of a social order, in which thebenefits of capitalism are retained through the creation of aquisecent working class, are dreamed in a strongly spatial form.From the factory com mu nities of Robert Owen and the phalanster-ies of Fou rier, to the garden cities of Howard and the technologic-al romances of Le Corbusier, the fundamental form of the dream

is identical: the design of peaceful industrial production by theredesign of the spatial form of communities using a new urbangenotype.

The dream has two principal forms, which we might call thehard and soft forms. The hard form, which is that arising fromthe system of production itself, simply aims to reproduce in spacethe essential syntax of relations of the social system: that is, toreproduce the social separation of workers from each other by thecreation of forms of space that similarly separate at each level ofhierarchical system. The hard form emphasises asymmetric and

nondistributed syntaxes: by imposing a strong descriptive regimeon the co mm unity , it can at the same time keep it large. It depen dson the power of space to separate, and to physically prevent toohigh and dense a rate of p-model encounters, by using the 'noneighbours' principle. It is wrong to say that high-rise estates areunsuccessful. For their unmanifest purposes of community reduc-tion they are extremely successful. Unfortunately for theircreators, this 'success

1 does not includ e the stable repro duc tion of

society.

The fundamental shift in the urban surface from symmetricdistributed syntaxes to asymmetric nondistributed syntaxes is the

phys ical m anifestation of these prin ciples . The classic form of themodern estate, with its outer boundary, open-space barriers, few

Page 281: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 281/296

Postscript 267

entrances, separate blocks, and separate staircases, is the veryparadigm of this solution. Its morphological origins still stand forall to see: the philanthropic housing of London from the 1840sonw ards p rovides the master models for a spatial form which w as,

under the guise of a new technology, to sweep the world in themid-twentieth century, becoming as universal a form of space asdistributed street systems were in the previous society.

The essence of the hard solution is to impose strong descriptivephysical control on the large aggregate, thus permitting it toremain large in the vicinity of production. The essence of the softsolution has the reverse principles: it works by meaning rathertha n by syn tax, by build ing u p an ideological order, or g-model inthe small aggregate. The principle of this form of productionrequires formally that the basic group remains small, since the

system is likely to be untenable with overlarge spatial aggrega-t ions. The two principles of this solution reflect these two aspectsof g-model stability: the concept of the small community; and theconcept of dispersion. Howard's garden cities are the paradigmideological statement of the soft solution. He proposes nothingless than the disaggregation of cities, and their internal fragmenta-tion into noninterchangeable zones, ordered by a strong exoge-nous model expressing a conception of social order. The softnessof the solution is built up through the imagery of trees and othernatural phenomena which, in the service of the social logic ofspace, can be brought to serve the cause of social stability. The

surburban ideal, with its strong emphasis on forms of housingcharacteristic of immediately previous societies - the cottage inEngland , the ranc h in America, the hacienda in Spain, and so on -and on the dw elling as a primarily  symbolic  entity, are essentiallythe same thing. The community is ideally small. It has fewencou nters. Those wh ich occur are non-random and even stronglycontrolled. And everyday life is strongly conformist to g-modelsof behaviour, including spatial behaviours, like the maintenanceof a certain type of order in the front garden, and a certainstandard symbolic configuration within the household.

Behaviour in different regions of the industrial bureaucraticsystem corresponds more or less to the following simplifiedmodel: the more the system of production dominates over repro-duction, as for example in France or Brazil, then the more thehard solution will dominate over the soft; the more the system ofreproduction dominates over the system of production, as forexample in England, then the more the soft solution will pre-dominate over the hard. And when the productive and reproduc-tive sectors of the system are fused together, as in the SovietUnion, then the more the policy of urban dispersion and thehard spatial solution are unified.

Both hard and soft solutions, however, share a common ideo-logical base. The hard solution aggregates large numbers of

Page 282: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 282/296

Page 283: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 283/296

Notes

Preface

1 William H. Michelson, Man and  His  Urban  Environment: A Socio-

logical  Approach, Addison-Wesley Publishing Company, Reading,M assach usetts, 1976 edition w ith, revisions.2 Claude Levi-Strauss, Structural  Anthopology,  Basic Books, New York,

1963;  Pierre Bourdieu, The Berber House', in Mary Douglas (ed.),Rules and Meanings, Penguin, Harmondsworth, Middlesex, 1973;Pierre Bourdieu, Outline of a Theory of Practice, Cambridge U niversityPress, 1977; Anthony Giddens, A  Contemporary Critique of Historical

Materialism,  vol. 1, 'Power, property and state', Macmillan Press,Londo n and Basingstoke, 198 1; Peter J. Ucko, Ruth Tringham andG. W. Dimbleby, M an,  Settlement and Urbanism, Duckworth, London,1972; David L. Clarke,  Spatial Archaeology,  Academic Press, London,1977; Colin Renfrew, 'Space , time and polity', in J. Friedman and M. J.Rowlands (eds.), The Evolution  of  Social Systems, Duckworth, Lon-don, 1978; Ian Hodder,  The Spatial Organisation of  Culture, Duck-worth, London, 1978.

3 Christopher Alexander, Sara Ishikawa  an d Murray Silverstein with MaxJacobson, Ingrid Fiksdahi-King and Shlomo Angel, A Pattern Lan-guage, Oxford University Press, New York, 1977.

4 Christopher Alexander, 'A  city is not a tree', Design Mag azine, no. 206,1966, 46-55 .

5 G. Stiny and J. Gips, Algorithmic Aesthetics, University of CaliforniaPress,  Berkeley, 1978.

6 J. H. von Thunen, Von Thunen's  Isolated State,  Pergamon, London,1966 (edited by P. Hall from the original German edition of 1826); W.Christaller,  Central Places in  Southern Germany, Englewood Cliffs,New Jersey, 1966 (translated by C. W. Baskin from the original Germanedition of 1933); A. Losch,  The Economics of Location,  New Haven,Connecticut, 1954.

Introduction

1 Labelle Prussin, Architecture in Northern   Ghana,  University ofCalifornia Press, Berkeley, 1969.

2 Stuart Piggott,  Ancient Europe,  Edinburgh University Press, 1965.3 Claude Levi-Strauss, Structural Anthropology, vol. 1, Anchor Books,

Garden City, New York, 1967, p. 285.

4  Ibid., p. 285.5 Oscar Newman, Defensible Space, Architectural Press, London, 1973.

269

Page 284: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 284/296

270  Notes  to pp. 7-39

6 Elman R. Service,  Primitive Social Organisation,  Random House,

New York, 1962, pp. 62-4.

7 Stanford Anderson (ed.),  On Streets,  MIT Press, Cambridge, Mas-

sachusetts, 1978.

8 B. Hillier and A. Leaman, The man-environment paradigm and itsparadoxes', Architectural Design, August 1973.

9 Babar Mumtaz, 'Villages on the Black Volta', in P. Oliver (ed.), Shelter

and Society,  Barrie and Rockcliffe, London, 1969.

10 Emile Durkheim,  The Division of Labour in  Society, The Free Press,

New York, 1964; originally in French, 1893.

11  Basil Bernstein,  Codes, Modalities  and the Process  of Cultural  Repro-

duction:  a model,  Department of Education, University of Lund

Pedagogical Bulletins, no. 7, 1980.

1.  The problem of space

1 Hermann Weyl,  The Philosophy of  Mathematics and Natural Scien-

ce ,  Atheneum Publishers, New York, 1949; originally published in

German as part of  Handhuch der Philosophie1, R. Oldenburg, 1927.

2 G. W. von Leibnitz, in a letter to the Abbe Conti, 1715; given in

Alexander Koyre,  Newtonian  Studies, Chapman and Hall, London,

1965,  p. 144.

3 G. W. von Leibnitz, in Nouveaux  Essais,  1703; given in Koyre,

Newtonian Studies p. 140.

4 Broadly speaking, these two positions correspond with the distinc-

tion between Weber's philosophical individualism and Durkheim's

metaphoric organicism. A more extreme example of the former is to

be found in the recent rise and fall of phenomenological sociology,

together with its late offspring, ethnomethodology; while the latter is

exemplified best, perhaps, not so much by a school of thought, so

much as by the largely imaginary school of thought so fervently

attacked by the phenomenologists - the positivists. Both schools of

thought can, however, be traced back to the earliest social scientific

formulations in Thomas Hobbes's organicism and John Locke's indi-

vidualism - in both cases clearly related to a conservative or liberal

political viewpoint. However, it is also possible to trace a line of

sociological thought which, while not formulating a clear scientific

answer to the problem of the discrete system, nevertheless avoids the

philosophical traps of the two positions. Such a line might begin with

Ibn Khaldun,  go  through Karl Marx  and the  Durkheim  of the

Elementary Forms  of the  Religious Life  and the  latter parts  of The

Division of  Labour in  Society,  and end today with such theorists as

Anthony Giddens, especially his recent A  Contemporary  Critique of

Historical  Materialism.

5 Rene Thorn, Structural  Stability and  Morphogenesis; first English

edition published by W. A. Benjamin Inc., Reading, Massachusetts,

1975,  translated by D. Fowler, p. 319. Originally published in French

in 1972.

6 This expression is borrowed from Claude Levi-Strauss, The Savage

Mind, Weidenfeld and Nicholson, London, 1966, p. 17. Originally

published in French as La Pens6e Sauvage, Plon, 1962. The notion is

developed as part of a theory of design in Hillier, Musgrove and

O'Sullivan, 'Knowledge and design', in H. M. Proshansky, W. H.

Page 285: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 285/296

Notes to pp . 40 -61 271

Ittleson and L. G. Rivlin (eds.),  Environmental Psychology,  Holt,Rinehart and Winston, New York, 2nd edition, 1972.

7 W. van O. Q uine, 'Identity, ostention and hy postasis ', in From aLogical Point of View,  Harvard University Press, Cambridge, Mas-

sachusetts, 1953. This section owes a great deal to Professor Quine'sviews,  although he may well object to our spatial interpretation ofthem.

8 As suggested, for example, Michael Arbib: 'Self reprod ucing automata;some im plication s for theoretical biology', in C. H. Wadd ington (ed.),Towards a Theoretical  BioJogy, vol. 2, Essays, Edinburgh UniversityPress,  1969.

9 This reversal of the relation betwe en information and spatio-temporalevents was originally suggested by Adrian Leaman (personal com-munication).

10 Emil Durkheim,  The Elementary  Forms  of the  Religious  Life, GeorgeAllen and Unwin, London, 1915. Originally in French. See for

example the excellent introduction.11 D Michie, On Machine Intelligence, Edinburgh University Press,1974,  p. 117.

12   Ibid., p. 141.13 J. von Neuman,  The Computer and the Brain,  Yale University Press,

New Haven, Connecticut, 1958, p. 82.14 W. McCulloch,  Embodiments of  Mind, MIT Press, Cambridge, Mas-

sachusetts, 1965, p. 274.15 March Kac and Stainislaw Ulam, Mathematics and Logic, Penguin,

Harmondsworth, Middlesex, 1971, p. 193. Originally in E ncyclopaediaBritannica,  1968.

16 Jean Piaget,  The Child's Conception of Space,  Routledge and Kegan

Paul, London, 1956. Originally in French, 1948. See also S. E. T.Holloway, An  Introduction to the Child's Con ception of  Space,Routledge and Kegan Paul, London, 1967.

17 Suzanne Langer, Feeling and Form, Routledge and Kegan Paul,London, 1953, p. 95.

18 Basil Bernstein, Class, Codes and Con trol, vol. 1: Theoretical Studies:Towards a Sociology of  Language, Routledge and Kegan Paul, Lon-don, 1971, p. 128.

2.  The logic of space

1 Douglas Fraser, Village  Planning in the  Primitive World, Brazillier,New York, 1968.

2 This type of process raises a number of interesting theoretical issues.First and foremost it introduces an extra dimension into questionsabout the 'causes' of settlement forms. Normally these questions areanswered in terms of historical, economic, and social factors, but inthis case it is clear that som ething akin to an internally lawful processof morphological development plays a more important part. In a puresense, the 'cause' of the beady ring genotype lies in the laws of spatialcombination, irrespective of any particular historical events or socialprocess that may have given rise to it. On the other hand, had not ahistorical or social process given rise to the process, then equallyclearly the form would not exist. The matter is confused further by thefact that it is easy to conceive of different social processes that couldactivate the same process of morphological development, in this case

Page 286: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 286/296

272  Notes to pp.  66-89

for example, different patterns of kinship or  inheritance could equallywell activate  the beady ring development.

The proper solution  to  this might  be to  make  a  clear distinctionbetween  the lawfulness  of the  morphological process and the contin-

gent external historical  and social factors. The internal morpho logicalrule might be called the 'formal ind epen den t variable'; and the externalsocial agency which constructs  the rule in  this particular instance the'cause', following the normal usage of the term. This im plies a researchstrategy: when faced with the problem of explaining a  settlement formone wo uld always be looking in  two directions, not one - at  the lawfulinternal process  of  spatial combination which accounts for the mor-phology  in a  formal sense; and at the particular social  and ecologicalcircumstances which gave rise to the process.

Another issue  of  theoretical interest lies in the implication  for thestudy  of  evolutionary processes. Normally when studying evolutionone would  be  studying  the  real historical development  of a  single

settlement,  or a  group  of  settlements over  a  protracted time period.Very  few  such studies have been done,  for the  simple reason thatreliable evolutionary data  on  settlement forms  is  exceedingly hard tocome by. In the  process described, a  different possibility has emergedby implication: that  of  using synchronous sets  of  data  as a  kind ofevolutionary sample.  The  proced ure ap pears reason able, given thatthere  is in  some region  a  more  or  less well-ordered process  ofsettlement growth  of  some kind. Where growth appears  to be  wellordered,  it  seems reasonable  to try the  possibility that  a  sample ofsettlements of  different sizes existing con tempo raneou sly  can be usedas though they represented various stages  of  evolution  of the  samegenetic pathway. Where this proved unfruitful  it would be reasonable

to argue that no  single rule-given process prevailed in the area.3  The  argument about basic generators  is conducted  in  two dimensions

because, perhaps contrary  to appearances, hu man spatial organisationis not three-dimension al  in the sam e sense that it is two-dimensional  -for the sim ple reason that hu ma n beings do not fly and bu ildings do notfloat in the air.  Human space is in  fact full  of strategies -  stairs, lifts,etc. - to reduce three-dimensional structures to the two dimensions inwhich human beings move and order space. This is not to say that thethird dimension  is unimportant; only that it is not comparable w ith thetwo-dimensional structure. Buildings  of  more than  one  storey  aretwo-dimen sional structures laid one on top of  the other and connectedin   a  two-dimensional  way. Hum an spatial organisation  is, in  effect,

rooted  in two dimensions  and elaborated  in  three. The  fundamentalstructuring mechanisms of the 'social logic' of space are, how ever, bestrepresented  in two dimensions.

4 Even so, the fact that they can be written will in due course appear as aproperty  of  considerable importance.

3.  The analysis of settlement layouts

1  W. Elsasser,  'The  role of individuality  in biological theo ry',  in C. H.Waddington   (ed.)  Towards  a  Theoretical  Biology,  vol. 3.  Drafts,

Edinburgh University Press,  1970.2  J. McCluskey,  Road Form and Townscape,  Architectural Press, Lon-don, 1979.

Page 287: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 287/296

Notes to  pp.  89-178  273

3 Similarly, geographical approaches to the analysis of space, H. Carter

The Geographical Approach', in M. W. Barley (ed.), The Plans and

Topography of Mediaeval Towns in England and Wales, CBA Re-

search Report no. 14, 1976; M. R. G. Conzen, Alnwick,  Northumber-

land, a  study in town plan analysis; Institute of British Geographers,27,  1960; M. T. Kriiger, 'An Approach to Built-form Connectivity at

the Urban Scale', Environment  and  Planning B, 6, No. 1 1979, pp.

67-88, fail in principle to deal with this problem of the continuity of

the open space of settlement systems.

4 Although only a limited number of cases will be referred to here, it

should be stressed that this methodology of analysis is by no means

untested. On the contrary, it has been used over several years by

M.Sc. students at the Bartlett School of Architecture and Planning to

explore a wide variety of settlement forms from all parts of the world.

These studies will be the subject of a further volume, but represent a

substantial background, against which the cases presented here are

set.5 Levi-Strauss, Structural Anthropology, 1963.

6 All mathematical formulae are original, as far as we know, with the

exception of the formula for ringiness which is well known.

7 Note that 'trivial rings', i.e. rings which simply result from axial lines

intersecting in the open space, should not be counted.

8 These routes constitute what we call the local supergrid, i.e. the ring

of axial lines with E values greater than 1 - or whatever is specified

for a 'higher control' supergrid.

9 O. Newman, Defensible Space.

10 O. Newman,  Community of Interest,  Anchor and Doubleday, New

York, 1980.

11C.  Alexander et al.y A Pattern Language.

12 Newman, Defensible Space, p. 6.

13 C. Turnbull,  The  Mountain  People, Jonathan Cape, London, 1973.

14 J. Jacobs,  The Death and Life of Great  American Cities, Penguin,

Harmondsworth, Middlesex, 1961.

4.  Buildings and their genotypes

1 See for example O. Newman, Defensible Space; C. Alexander, et al., A

Pattern  Language. The most common form in which these ideas

appear, however, is as assumptions, as for example in: HMSO, Housing

the Family,  MTP Construction, Lancaster, 1974.

2 J. Burnett, A Social History of Housing, David & Charles, 1978, pp. 169

and 194.

3 D. Chapman, The Home and Social Status, Routledge and Kegan Paul,

London,1955,  pp .  112-13.

4 Bernstein, 'Social class, language and socialisation', in  Class, Codes

and Control, pp.  184-5.

5 J. Walton,  African Villages, van Shaik, Pretoria, 1956.

6 R. S. Rattray, Ashanti Law and Constitution,  Oxford University Press,

1929, p. 56.

5. The elementary building and its transformation

1 T. Faegre, Tents: architecture  of the nomads,  Anchor Books, Garden

City, New York, 1979, p. 24.

2  Ibid., p. 92.

Page 288: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 288/296

Page 289: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 289/296

Notes to  p p .  255-61  275

12 C. Nakane, Japanese   Society,  Weidenfeld and Nicholson, London,1970; also Penguin, Harmondsworth, Middlesex, 1973, p. 1.

13   Ibid. pp. 25-6.14 Ibid., p. 31.

15   Ibid. p. 65.16   Ibid. p. 5.17 T. G. H. Strehlow, 'Geography and the Totemic landscape in Central

Australia: a functional study', in R. M. Berndt (ed.), AustralianAborginal Anthropology, Australian Institute of Aboriginal Studies,Canberra, 1970.

18 Bernstein,  Codes, Modalities and the Process of Cultural  Reproduc-tion: a model.

Page 290: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 290/296

Index

Aborigines, Australian, 236, 260abosomfie, Ashanti, 181abstract materialism, 2 01 -6agricultural revolution, 27Alexander, C , xi, 130,1 46, 269, 273

Alexandra Road estate, 24alpha-analysis

see: syntactic analysisaltar, 17 9,18 0Ambo, 163 et seq.And erson, S., 8, 270Apt, region of, 55Arbib,M.,271Aristotelianism, 205, 206army camps, 38- 9arrangement

of people in space, 26, 29of space, 27, 29

arrangements (as systems)

defined, 50 -1, 20 4-5principles of, 253social systems as, 223-41spatial logic of, 198-222stability in, 2 18-2 1

artefacts, 1artificial intelligen ce, 46Ashanti, 167 et seq., 181 et seq.asylums, 184asymmetry,

see: symmetry-asymmetryasynchrony, 186,187,191,192,195

see: synchrony-asynchronyattribute groups, 255

autonomy, of space, 5,1 99axiality

definitions, 1 7,9 1,96axial articulation, 99axial connectivity, 103axial depth, 104axial integration of, c onvex sp aces,

99axial integration cores, 115axial line indexes, 103axial link indexes, 100axial maps, 92 et seq.axial ringiness, 104,123,128axial space indexes, 101

grid axiality, 99,123,128justified axial maps, 106

in shrines, 181 et seq.in urban villages, 123 et seq., 259linking to convexity, 12 0-1two step principle, 17 -18

banks, 184Barley, M. W., 273Barnsbury, 123 et seq.beady ring forms, 10,1 1,17 , 5 8,6 3,8 3,

90, 212 , 215 et seq., 221computer-generated, 209 et seq., 219

et seq.Bedouin, 177Beguin, 63Bentham,J.,188Bernstein, B., 21 ,16 1,1 96 , 261 , 270,

271,273,274,275bi-card, 208 et seq.bi-permeability, 147,181,186

Bororo, 93,180, 213 et seq.boundaries

definition, 73 et seq.fact of, 144lack of, in settlements, 57-8logic of, 259nature of, 143-7

Bourdieu, P., x, 203 , 269, 274buildings

as artefacts, 1bureaucratic, 191 et seq.ceremonial, 22elementary, 176-9 9everyday, 97

exteriors, 19and genotypes, 143 -75as plans, 3, 14as social objects, 2, 9public, 97as space, 1, 2reversed, 183-97types, 183-space indexes, 101

bureaucracies, 188 et seq.Burnett, J., 158, 273

Cameroun, 63carrier space, 66-80, 90-140,146

et seq.Carter, H., 273

Page 291: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 291/296

Index 277

categories, 16,19 , 21, 41, 97 ,16 1-2 ,165-6,180,194

cellsaggregations, 9,10,  59-61, 209

etseq. ,219

elementary, 19,176open and closed, 59 -60 et seq., 66

etseq., 176,181-2primary, 95 et seq., 1 43 ,18 5-6

central paradox, 259 et seq.ceremonial centres, 22ceremonial fund, 237, 240, 264ceremony, 7,17 4, 236, 252, 254Chapman, D., 158, 273church, 181-2clans, 250Clarke, D.L .,x, 269classes, social, 214, 240, 257 et seq.,

263 et seq.

as differential solidar ities, 240men and wom en as, 240, 241, 249spatial dynamics of, 240-1

climate, 4cognitive theories (of space), 7combinatorial explosion, 86communitas, 182,187compounds, 63,1 32 -3, 242 et seq.computer-generated

beady rings, 209 et seq., 219movement patterns, 24social relations, 223-34

concavity, 75,98constituted space, 105,115

continuously constituted, 106,114constitutive-representative distinction,

96,180continuum assumption, 144control, syntactic, 14,15,16,18,146,

147, 153 ,158,16 5-6, 185-8, 192-6definition, 109convex, 113cores, 116 et seq.interface of, 185 et seq.local, 122

control, social, 21, 261convexity

definitions, 17,91,96

articulation, 98building-space indexes, 101converse decomposition map, 106converse interface map, 105decomposition map, 105,129,131depth from building entrances, 102grid convexity, 99,123interface m ap, 104justified convex map, 106integration from b uilding entrances,

113,123,128numerical properties, 113-15ringiness, 102and axiality, 120-1, 259

in urban village s, 126Conzen.M. R. G.,273correlation of space and movement, 24

correspondence—noncorrespondence,6,41,141,255-61,268

Christaller,W.,xii,269

deep structure, 198

defensible space, 140, 269department stores, 183depth, syntactic, 108 et seq.description, general problem of, 26,

198-9,222,259-60description cen tres, 43, 203 et seq.description retrieval, 37, 41-4 , 50 -1 ,

204 et seq., 2 6 et seq., 225, 231,239,259

description, as syntactic property, 92,96,108,170

descriptionscompressed, 53- 5, 76, 215control of, 222

global, 37, 41pathology of, 185 et seq.perpetuation of, 45retrievability of, 45stabilisation of, 189short and long, 13, 208 et seq.

descriptive systems, 2 12, 217, 221, 257et seq.

designmoral science of, 28distributed, 34

determination, social and economic,199-200,206, 271-2

diamond-shaped pattern, 111,112

discours e, architectural, 2, 3dispersion, 5, 249distributed-nondistributed

definitions, 11 ,14-1 6, 34, 62-6 , 69 -80,94,148-55

in building analysis, 1 48-5 5,159 ,163-75,183-97,243

in relation to social categories, 16,150 et seq., 163 -75,1 83-9 7, 243

in settlement analysis, 94, 96,1 06,117,132,138,253,263,266

in social relations, 248, 255, 265doctor's surgery, 191 et seq.Douglas, M., 269

duality, 216-17Durkheim, E., 4, 18, 22, 220, 269, 270,

271,274

ecological areas, 4elementary formulae, 77 , 78, 221elementary generators, 12, 52 , 66-81,

216-17elementary structures, 52Elsasser.W., 85 -6, 272encounter patterns, 200, 222

spatial logic of, 223-41formal and informal, 224differential, 229

encounters, 18, 20, 222probabilistic, 20, 235, 253, 256-61deterministic, 20, 256- 61

Page 292: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 292/296

278 Index

encounters  {contd)transpatial, 231,247

encounter space, 252, 254, 256, 268environment, 37

transformation of, 2

as object, 7as social behaviour, 9see also: man-environment paradigm

equivalence classes, 88, 218estates, 23, 28, 263, 266

estate syntax, 70 -1 , 78, 80ethnic dom ains, 48

factories, 37 et seq., 183,184Faegre.T., 177, 273 -4fine-tuning (of space), 98,193-4,197fire, sacred, 166Fortes, M., 242 et seq., 274Fourier, C, 266

frame groups, 255Fraser, D.,271Friedman, J., 269function, 1

gamma-analysis,see: syntactic analysis,gamma maps, 147 et seq.garden citie s, 266generation

of global form, 11 , 52-8 1of structure, 50as dimension of systems, 212, 221,

257 et seq.

genotypes-phenotypes, 12,13 , 38,42 ,154,160,173,174,175,178, 181et seq., 198, 208 et seq., 266

biological concept of, 42inverted genotype, 44properties of settlemen ts, 123 et seq.,

138-40genotypical trends, 150genotypical stability, 204new urban genotype, 138—40, 266

geometry, 4,15, 30, 47,150Ghana, 4, 242 et seq.Giddens, A.,x, 2 69, 270Gips,J.,xi, 269

global form/order, 9,1 0, 11 , 24, 35, 82,90-142, 216

local-to-global, 21, 34, 36, 45, 84, 197216,240,259-60

global-to-local, 21-2,197, 259-60g-mod els-p-models, 210 et seq., 235

et seq., 247 et seq., 256-61Goldin,G.,185,186, 274graphs, 14,14 7

justified, 14adjacency, 150

gridsdeformed, 18,90orthogonal, 99

growth, pathways of, 257 et seq.g-stability-p-stability, 218 et seq., 235

et seq., 252 -4, 265

guilds, 254

Hacilar, 64hard solutio n, 266 et seq.HardoyJ.,62hide-and-seek, 37, 87hierarchy, 5, 28,143,186,187,190,

245,249,255-6,263,265Hobbes,T.,270Hodder.L.x, 269Holloway,S.E.T.,271Hopi, 250 et seq.hospitals, 184,186,192 et seq.houses, 15, 20, 95,145,155-63Howard, E., 266

ideography, 12, 52, 66-80

ideology, 2 0, 21, 222, 257 et seq.Ik, 132-3individuals, 82, 84, 88,1 44, 2 03, 208

et seq., 210, 240individuality, 85,155inequality

in buildings, 193 et seq.of classes, 257 et seq., 264 et seq.

inertia postulate, 205indeterminacy, 54,18 9infirmary, 185inhabitants-strangers, 1 7,1 8,1 9, 24,

29,82,95,123,140,146inhabitants-visitors, 19 ,146 ,154 ,155 ,

163-75,177-98inside-outside, 11,12,19,143 et seq.,160-1,174,259

instrumental sets, 39integration-segregation, 1 6, 23, 28, 96,

155,157,164,169measure of integration, 108see: relative asymmetrymean integration from all points,

109,123,128,152,172integration from building entrances,

113,123,128,139integration cores, 1 15,1 23,1 29integration from outside, 139,152,

155-63interchangeability, 13, 214 et seq., 243,249

interface, 17 ,19, 82, 90, 95 ,14 0,14 6-7 ,167,170,174

interface map, 104,137-8converse interface map, 105types of, 176-97

inter-object correlations, 2 14- 15interpretation, system atic, 122 et seq.

Jacobs, J., 140, 273

Jamous, H., 274

Japan, 255 et seq.Jones, Liz, 58

just if ied maps, 106,149

Page 293: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 293/296

Index 279

Kac,M.,47, 271Khaldun, Ibn, 270kinship, 200-1, 237, 251-2Koyre\A.,31,270know ables, 46, 66

knowab ility, 45 et seq., 198, 208kraal, 65,163 et seq.

see: syntaxKri iger ,M.T. ,273

labels, 150-1 ,154 , 214 et seq., 231et seq.

landscaping, 98Langer, S., 271languages

natural, 40, 45-51morphic, 45-51, 66,198-9, 224mathematical, 45-51

Leam an, A., 270, 271

Le Corbu sier, 266Leibniz, G.W. von, 31,270Levi-Strauss, C , x, 4, 93 , 202, 269, 274Locke, J., 270London, 18, 23, 24, 27, 12 3,1 33 et seq.,

254Losch, A.,xii, 269

magic, 30Malinowski ,B. ,217,274man-en vironm ent paradigm, 9, 268market-places, 79Marquess estate, 126 et seq.Marx, K., 270

Massachussetts Institute ofTechnology, 8

master card, 209 et seq.mathem atics, 12, 30, 47, 94

imperfect, 48see also: languages

mausoleum, Ashanti, 168,172Mauss, M.,4matrilineages, 251-2matriliny, 175, 231, 246-54matrilocality, 253-4Maya, 22,62-3McCluskey, J., 89, 272McCulloch, W., 47, 271

meaning, 1, 2, 5, 8, 13, 14, 16, 39,in morp hic languages, 50as stably retrievable description, 50

meeting places, 21,164 et seq.Mellaart,J. ,64mental models, 38Mic helson , W. H., ix, 269Michie,D.,46, 271midges, cloud of, 34-5, 36Mindeleff,V.,250, 274mixing mech anism s, 252, 258Mongols, 179Morgan, L., 201, 274morphic languages

see: languagesmorphogenesis, 205morphology, 4 5, 53

morphological types, 12Moundang, 63Mum taz, B.,36, 270museum s, 183Musgrov e, J., 270

mythologies, 7

Nak ane, C , 255 et seq., 275Narrenturm, 187Ndembu, 242 et seq.neighbours, 226 et seq.Neuman, J. von, 46- 7, 271Newm an, O., 6,130,132 ,144, 269, 273New ton, Sir I., 31nondistributed

see: d istributed-nondistributed'no neighbours' model, 132,138,15 2,

153see: tree, everywhere branching

noninterchangeability,  41 , 69 , 214 etseq., 247

see: interchangeabilitynon-order, 5,10,14numbers, 37, 46-7 , 87, 89

object, elementary relations of, 66occupants-outsiders, 16

see: inhabitants-strangers;inhabitants-visitors

offices, 184,194Oliver, P ., 270Omarakana, 217open-plan, 194 et seq.

operating theatres, 193Oraibi, 250-1 et seq.organic patterns, 4organisationa l forms, 190 et seq.ostensions, 40O'Sullivan,P.,270Ow en, R., 266

pack of cards, 207 et seq.Panopticon, 188paradigms, 6, 268

of spatial org anisation, 140 et seq.see: man-environment

pathology

urban, 2, 3, 6environmental, 28of descriptions, 185of indiv iduals, 185of society, 185,187

patriarchs, 238, 243Peloille,B.,274permeability, 14,147,17 7

map, 105,138personal-positional systems, 161-2phenoty pes, 208 et seq.

primacy of, 205see: genotypes-phenotypes

Piaget,J.,47, 271

p-modelssee: g-models-p-models

police stations, 184

Page 294: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 294/296

280 Index

policing space, 140politics, 22 2, 239, 257 et seq.polyfocal net, 218, 234, 239, 248, 252,

254population

density, 18growth, 258 et seq.

postulates for settlement sp aceanalysis, 94 et seq.

power, 21,19 6premises, 147 et  seq.prisons, 184production, 202, 222, 257 et  seq.t 264

et seq.professions, 188 et seq.Prussin, L., 4, 24 3-4 , 269p-stability

see: g-stability-p-stabilitypurposes, 37

pyramid-shaped pattern, 113,114

quantification, 14Quine.W. van 0.4,271

randomness, 9,10 ,13 , 34 -5, 205, 215,244

and structure, 36, 222random elimination, 220

random process, 11, 66-8 0, 205, 212,222

restrictions on, xi, 1 0,1 2,1 4, 34, 35,52,55,206

rationality, dogmatic, 30-1

Rattray.R. S.,167,273recursion, 77-8 0reductionism, 201reflexive knowledge, 185regularity, 212

see: singularityrelational identity, 209relative asymmetry, 1 5,16 ,108 -14 0,

152-75,234defined,15,16,108-9see: integration; symmetry-

asymmetryRenfrew, C.,x, 269representa tion, problem of, 89—90

reproduction. 20 2, 204 et seq., 222, 264et  seq.

response, subjective, 38ringiness, 102-40,148-75,176-97,

229,234defined,102convex ringiness, 102axial ringiness, 104,123,128relative ringiness, 153 et seq.

ring street, 10see: syntax

ritual, 35, 218, 244, 245, 247, 248 , 250Rowlands, M. J., 269rule-governed creativity, 201

schools, 184,195 et seq.secondary boundaries, 95

semantics, 13,16, 55,1 61, 223semantic illusion, 206-22semantic information, 214semi-islands, 235 et seq., 247semiology, 8

Service, E. R., 6, 236 -7, 270, 274settlement forms, 4,1 0,1 7, 57

analysis of, 82-1 42sexes, relations of, 164,168-75,177

et seq., 224- 41, 249 et seq.shops, 176shrines, 21,18 0 et seq., 191, 245singularity, 2 12,23 8size, 89

see: synchrony-asynchronysocial classes

see:classessocial determinant, 199social knowledge, 145,146,187

social morphology, 201social solidarities, 18, 20,142,145, 154,

158,160-2,177 et seq.t 223 et seq.defined,224differential, 163 ,170, 22 3-4 1, 249,

253, 25 6-6 1, 264 et seq.organic-mechanical, 18, 20, 22, 220 -

1spatial, 145,160-1,174-5transpatial, 145 ,159 ,161 ,174

societiesas discrete systems, 32as collections of individuals, 32 -3as organisms, 33

as encounter probabilities, 234-41as spatial systems, x, 29-42 , 201 -6,

242-61sociology, 29, 201, 206-7

of buildings, 2sociological theory, 32- 3, 20 1, 204spatial, 6, 33

soda lities, 7, 237soft solution, 267Somerstown, 133 et seq.space

as anthropological study, 3-5as by-product, 4,5,27

domestic, 143,155 et seq., 162-3

deepest, 163,180 et seq.as external projection, 4, 5labelled, 15problem of, 14, 26-51and social structure, 4, 8social theory of, 19, 29, 33 , 224as theoretical discipline, 3three-dimensional, 272

spatial concepts in children, 47spatial-transpatial groups, 41 ,42 ,14 1,

231 et seq., 25 6-61spatial-transpatial growth, 258 et seq.spatial-transpatial integration, 40, 51,

66,23 7et seq.

spatial lawsas natural laws, 36, 2 71- 2and global form, 37

Page 295: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 295/296

Index 281

spatial order, 4, 7, 9,1 3, 14 , 27stage door effect, 18 2,1 92state, spatial definition of, 260Stiny,G.,xi,269strangers

see: inhabitants—strangersstreets, 18, 28, 63, 79, 95,1 86 , 267Strehlow,T. G. H.,275structuralism, 198-222structural stability, 34, 44style, ix, 1, 2subject-object problem, 7, 9supergrid, 273superstructure

ideological, 222juridico-political, 222

surveillance, 140symmetry-asymmetry, 11,14, 96, 215

definitions, 11,12, 62, 66-80

in building analysis, 148 -75in settlement analysis, 94, 96-140in social relation s, 248 et seq., 265

synchrony-asynchrony, 92, 96,170,180 et seq., 186, 187, 1 91 -2,1 95

syntactic analysisof building interiors (gamma-

analysis), 143-63of settlements (alpha-analysis), 8 2 -

140syntax, 13,63,161,199,205

defined,48, 66cluster type, 68, 78 -80 , 216, 244clump type, 68, 78- 80, 216, 225

et seq.concentric type, 68, 78-8 0central space type, 70, 78-80, 216estate type, 70, 78-8 0ring-street type, 71, 78-80, 216kraal type, 71,78-80glued together, 1 1, 76bound together, 1 1, 76syntactic no nequivalence, singulars and plur als, 65subjects and objects, 65

systemsartificial, compared to natural, 36, 44,

54

discrete, 32 -4, 39, 44, 50, 204spatial continuity of, 36, 204of transformations, 53

Tallensi,242e£seq.,274technology, 4tents, 177 et seq.territoriality, 6, 7, 268

theatres, 182Thompson, J. D., 185-6, 274Thorn, R., 33,199, 270, 274threshold s, 19, 75Thunen, J. H. von, xii, 269

Tikal.22,62,63Tonnerre, 185-6topography, 4topological relations, 37, 46-7, 87transpatial, 20, 45, 51, 66, 141,162,

173 -5, 216 et seq., 220- 2, 247et seq., 256- 61

defined,40-1groups, 42 ,14 1, 231 et seq., 256-61growth, 258 et seq.integration

see: spatial-transpatial integrationsolidarities

see: social solidarities

and boundaries, 144transpatial space, 161,178

transitivity-intransitivity, 69tree, everywhere branching, 133

see: 'no neighbours' model,Tuareg, 178Twnbull,C.,273Turner, V., 182, 242 et seq., 274

Ucko,P.J. ,x,269Ulam,S. ,47,271unipermeability, 147,181,186universal and particular terms, 40urban villages (of London), 18

urban hamlets (of V aucluse), 10uterine sibling groups, 247-8

Var, 90Vaucluse, France, 10, 55-6, 59vertical p rinciple, 255visitors

see: inhabitants-visitorsvillage greens, 12 , 79, 221

Waddington, C. H.,274

Walton, J., 163, 273Weber, M., 270W eyl,H.,29, 270

Willmott, P.,254,274Wolf, E., 237, 274

Young, M., 254, 274yurt, 179 et seq.

Zulu, 65

Page 296: [Bill Hillier, Julienne Hanson] the Social Logic of Space

7/18/2019 [Bill Hillier, Julienne Hanson] the Social Logic of Space

http://slidepdf.com/reader/full/bill-hillier-julienne-hanson-the-social-logic-of-space 296/296