25
Original article Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology § Rudistes du Cénomanien-Turonien du Sinaï Occidental : paléontologie systématique et paléoécologie Mohamed S. Zakhera Department of Geology, Aswan Faculty of Science, South Valley University, Aswan, 81528 Egypt Received 4 January 2010; accepted 24 October 2010 Available online 28 April 2011 Abstract The Cenomanian-Turonian sequence is well exposed in western central Sinai and contains a considerable number of rudist species. The identified rudists belong to Radiolitidae, Hippuritidae and Requieniidae. Fifteen species are described, belonging to ten genera: Requienia, Toucasia, Apricardia, Radiolites, Eoradiolites, Praeradiolites, Sphaerulites, Sauvagesia, Hippurites, and Vaccinites. Eleven species are reported in the Cenomanian and four species in the Turonian. Within the Cenomanian, two new species are described: Requienia tortuosi and Eoradiolites lenisexternus. The genus Requienia and the species Apricardia carentonenis d’Orbigny, Eoradiolites syriacus (Conrad), Sphaerulites agar- iciformis Delamétherie, Sphaerulites depressus Blanckenhorn and Vaccinites cf. grossouvrei (Douvillé) are reported for the first time from Egypt. The Cenomanian and Turonian rudists in the western Sinai show either elevator or clinger morphotypes, with the predominance of the former type; recumbent mode of life is rarely represented by some Requieniidae. The elevators are of isolated and clustered occurrences and more represented in the Cenomanian sequence. Rudists of the study area are mainly of parautochthonous fabrics with low to dense packing. Autochthonous fabrics are also achieved by some species, mainly in the Turonian. The disappearance of rudists from the middle part of the sequence and above the Cenomanian/Turonian boundary is due to a deeper setting that resulted from sea-level rise or seafloor subsidence (shelf drowning). The occurrence of rudists with oysters and other benthic fossils in the siliciclastic and carbonate sediments of the Cenomanian and Turonian sedimentary rocks in the Sinai indicate that the sequence was deposited on a broad, shallow shelf. Although the first marine transgression invaded the central Sinai in the late Cenomanian, transgressive deepening conditions continued until the Turonian. The rudists of central Sinai are of Tethyan affinity with significant relation with North Africa, the Middle East, and Southern Europe. # 2011 Published by Elsevier Masson SAS. Keywords: Cenomanian; Turonian; Rudists; Systematic; Paleoecology; Egypt Résumé Une séquence cénomano-turonienne particulièrement riche en rudistes est bien exposée dans la partie occidentale du Sinaï central. Les rudistes identifiés appartiennent aux Radiolitidae, Hippuritidae et Requieniidae. Quinze espèces (onze cénomaniennes et quatre turoniennes) sont décrites, appartenant à dix genres : Requienia, Toucasia, Apricardia, Radiolites, Eoradiolites, Praeradiolites, Sphaerulites, Sauvagesia, Hippurites et Vaccinites. Deux nouvelles espèces cénomaniennes sont décrites : Requienia tortuosi et Eoradiolites lenisexternus. Le genre Requienia et les espèces Apricardia carentonenis d’Orbigny, Eoradiolites syriacus (Conrad), Sphaerulites agariciformis Delamétherie, Sphaerulites depressus Blanckenhorn et Vaccinites cf. grossouvrei (Douvillé) sont identifiés pour la première fois en Égypte. Les rudistes du Cénomanien et du Turonien du Sinaï occidental présentent des morphotypes dressés ou fixés-cramponnés, les premiers prédominant ; le mode de vie couché n’est représenté que par quelques rares Requieniidae. Les formes dressées sont trouvées isolées ou groupées ; elles sont mieux représentées dans la séquence cénomanienne. Les rudistes de la zone étudiée présentent essentiellement des fabriques parautochtones de densités faibles à élevées. Des fabriques autochtones sont également réalisées par quelques espèces, principalement durant le Turonien. La disparition des rudistes au milieu de la séquence et au-dessus de la limite Cénomanien-Turonien est due à un approfondissement résultant d’une élévation du niveau marin ou de la subsidence (ennoiement de la plateforme). La présence de rudistes aux côtés d’huitres et d’autres fossiles d’organismes benthiques dans les sédiments Geobios 44 (2011) 409433 § Corresponding editor: Fabienne Giraud. E-mail address: [email protected]. 0016-6995/$ see front matter # 2011 Published by Elsevier Masson SAS. doi:10.1016/j.geobios.2010.10.004

Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

Embed Size (px)

Citation preview

Page 1: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

) 409–433

Geobios 44 (2011

Original article

Cenomanian-Turonian rudists from Western Sinai, Egypt:Systematic paleontology and paleoecology§

Rudistes du Cénomanien-Turonien du Sinaï Occidental :paléontologie systématique et paléoécologie

Mohamed S. ZakheraDepartment of Geology, Aswan Faculty of Science, South Valley University, Aswan, 81528 Egypt

Received 4 January 2010; accepted 24 October 2010

Available online 28 April 2011

Abstract

The Cenomanian-Turonian sequence is well exposed in western central Sinai and contains a considerable number of rudist species. Theidentified rudists belong to Radiolitidae, Hippuritidae and Requieniidae. Fifteen species are described, belonging to ten genera: Requienia,Toucasia, Apricardia, Radiolites, Eoradiolites, Praeradiolites, Sphaerulites, Sauvagesia, Hippurites, and Vaccinites. Eleven species are reported inthe Cenomanian and four species in the Turonian. Within the Cenomanian, two new species are described: Requienia tortuosi and Eoradioliteslenisexternus. The genus Requienia and the species Apricardia carentonenis d’Orbigny, Eoradiolites syriacus (Conrad), Sphaerulites agar-iciformis Delamétherie, Sphaerulites depressus Blanckenhorn and Vaccinites cf. grossouvrei (Douvillé) are reported for the first time from Egypt.The Cenomanian and Turonian rudists in the western Sinai show either elevator or clinger morphotypes, with the predominance of the former type;recumbent mode of life is rarely represented by some Requieniidae. The elevators are of isolated and clustered occurrences and more represented inthe Cenomanian sequence. Rudists of the study area are mainly of parautochthonous fabrics with low to dense packing. Autochthonous fabrics arealso achieved by some species, mainly in the Turonian. The disappearance of rudists from the middle part of the sequence and above theCenomanian/Turonian boundary is due to a deeper setting that resulted from sea-level rise or seafloor subsidence (shelf drowning). The occurrenceof rudists with oysters and other benthic fossils in the siliciclastic and carbonate sediments of the Cenomanian and Turonian sedimentary rocks inthe Sinai indicate that the sequence was deposited on a broad, shallow shelf. Although the first marine transgression invaded the central Sinai in thelate Cenomanian, transgressive deepening conditions continued until the Turonian. The rudists of central Sinai are of Tethyan affinity withsignificant relation with North Africa, the Middle East, and Southern Europe.# 2011 Published by Elsevier Masson SAS.

Keywords: Cenomanian; Turonian; Rudists; Systematic; Paleoecology; Egypt

Résumé

Une séquence cénomano-turonienne particulièrement riche en rudistes est bien exposée dans la partie occidentale du Sinaï central. Les rudistesidentifiés appartiennent aux Radiolitidae, Hippuritidae et Requieniidae. Quinze espèces (onze cénomaniennes et quatre turoniennes) sont décrites,appartenant à dix genres : Requienia, Toucasia, Apricardia, Radiolites, Eoradiolites, Praeradiolites, Sphaerulites, Sauvagesia, Hippurites etVaccinites. Deux nouvelles espèces cénomaniennes sont décrites : Requienia tortuosi et Eoradiolites lenisexternus. Le genre Requienia et lesespèces Apricardia carentonenis d’Orbigny, Eoradiolites syriacus (Conrad), Sphaerulites agariciformis Delamétherie, Sphaerulites depressusBlanckenhorn et Vaccinites cf. grossouvrei (Douvillé) sont identifiés pour la première fois en Égypte. Les rudistes du Cénomanien et du Turoniendu Sinaï occidental présentent des morphotypes dressés ou fixés-cramponnés, les premiers prédominant ; le mode de vie couché n’est représentéque par quelques rares Requieniidae. Les formes dressées sont trouvées isolées ou groupées ; elles sont mieux représentées dans la séquencecénomanienne. Les rudistes de la zone étudiée présentent essentiellement des fabriques parautochtones de densités faibles à élevées. Des fabriquesautochtones sont également réalisées par quelques espèces, principalement durant le Turonien. La disparition des rudistes au milieu de la séquenceet au-dessus de la limite Cénomanien-Turonien est due à un approfondissement résultant d’une élévation du niveau marin ou de la subsidence(ennoiement de la plateforme). La présence de rudistes aux côtés d’huitres et d’autres fossiles d’organismes benthiques dans les sédiments

§ Corresponding editor: Fabienne Giraud.E-mail address: [email protected].

0016-6995/$ – see front matter # 2011 Published by Elsevier Masson SAS.doi:10.1016/j.geobios.2010.10.004

Page 2: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433410

siliciclastiques et carbonatés des dépôts sédimentaires cénomaniens et turoniens du Sinaï indiquent que la séquence s’est formée sur une plateformeétendue et peu profonde. Bien que la première transgression marine ait envahie le Sinaï central durant le Cénomanien supérieur, l’approfondisse-ment transgressif a perduré jusqu’au Turonien. Les rudistes du Sinaï central sont d’affinité téthysienne, montrant des relations significatives avecl’Afrique du Nord, le Moyen Orient et l’Europe méridionale.# 2011 Publié par Elsevier Masson SAS.

Mots clés : Cénomanien ; Turonien ; Rudistes ; Systématique ; Paléoécologie ; Égypte

1. Introduction

Rudists are one of the fossil groups that demised at the end ofthe Cretaceous Period. They belong to bivalves but had bizarregrowth form. Rudists inhabited the tropical carbonate platformssince the late Jurassic (Masse and Philip, 1981; Scott, 1988;Ross and Skelton, 1993; Swinburne and Masse, 1995; Mitchell,1999; Sanders and Pons, 1999; Steuber and Löser, 2000; Özeret al., 2009). They became abundant in Cretaceous tropicaldeposits. They are therefore important in studying ancienttropical environments and their peculiar form also makes theman interesting subject of morphologic and systematic study.

In Egypt, systematic studies on rudists are generally lacking.Rudists of the Abu Roach (Egyptian Western Desert) weretreated by some authors (Fourtau, 1900, 1903; Dacqué, 1903;Douvillé, 1910, 1913; Hamza, 1993; De Castro and Sirna, 1996;El-Sabbagh and El-Hedeny, 2003; El-Hedeny, 2007; AbdelGawad et al., 2008). Some rudists from the northern EasternDesert were reported by Douvillé (1913), Klinghardt (1929) andEl-Hedeny and El-Sabbagh (2005). Since the studies by Douvillé(1910, 1913, 1915), rudists in Sinai have received attention ofsome authors (Parnes, 1987; Kora and Hamama, 1987; Kuss,1992; Steuber et al., 1999; Steuber and Bachmann, 2002; AbdelGawad et al., 2004a, 2004b; Bauer et al., 2004; Aly et al., 2005;Zakhera, 2005, 2008; Saber et al., 2009). Most of these studiesdealt only with reporting rudist occurrences. No comprehensivepaleontological, paleoecological and biostratigraphical studies[(Fig._ 1)TD$FIG]

Fig. 1. Location map, showing the rudi

have been conducted on the rudist of western Sinai. TheCenomanian through Turonian sequence is well exposed inwestern Sinai and contains a considerable number of rudistspecies.

This paper aims to report rudist bivalves from new localitiesin western Sinai (Fig. 1), and to study their systematicclassification and paleoecological conditions. In addition, Iintend to shed some light on the stratigraphy, environmentalsetting of the containing sediments and paleobiogeographicaffiliation of the studied rudists.

2. Stratigraphy, distribution and age calibration of thereported rudists

The Cenomanian-Turonian sequence in Sinai shows lateralvariation in lithofacies, biofacies and thickness due to localtectonics and sea level changes (Kuss, 1989). The investigatedarea lies at the western part of central Sinai. The central andsouthern Sinai lie within the ‘‘Stable Shelf’’ of Said (1962),which is characterised by less tectonic stresses and flat layingstrata. The Cenomanian strata are mainly made up of carbonaterocks in north Sinai; they have greater clastics in south Sinai(Kerdany and Cherif, 1990). The Turonian beds are composedmainly of carbonate throughout Sinai. During that time, Sinairepresents a passive margin of the southern Tethys.Thestratigraphic sequence from which the rudists are obtainedfrom Wadi El Siq, Wadi El Bagha and Gebel Musabaa Salama,

st localities in western Sinai, Egypt.

Page 3: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 411

is classified into the Raha Formation of calcareous clasticlithology, the Abu Qada Formation of clastics and morecarbonate lithology, and the Wata Formation of carbonatelithology (Figs. 2 and 3).

In Wadi El Siq and Wadi El Bagha sections (Fig. 2), threerudist levels can be distinguished from the late CenomanianNeolobites vibrayeanus Zone (Zakhera and Kassab, 2002) ofthe Raha Formation, as follows (from bottom to top):

� le

[(Fig._

FiBapr

vel A (calcareous mudstone): Sphareulites depressusBlanckenhorn, Radiolites lusitanicus (Bayle), and Eoradio-lites liratus (Conrad);

2)TD$FIG]

g. 2. Lithostratigraphy, ammonite zones and rudist range chart of Wadi Elgha and Wadi El Siq sections. Ps. flex. = Pseudaspidoceras flexuosum; Vas.

o. = Vascoceras proprium.

� le

[(Fig._

FiMVa

vel B (silty marl): Sphareulites depressus Blanckenhornand Sphaerulites agariciformis Delamétherie;

� le vel C (calcareous mudstone): Praeradiolites biskraensis

(Coquand) and Sphaerulites agariciformis Delamétherie.

These rudists are associated with some other bivalvesand gastropods. The Turonian rudists are reported fromthe ammonite Choffaticeras sege Zone within the upper partof the Abu Qada Formation, including Vaccinites cf.grossouvrei (Douvillé), Hippurites resectus Defrance andSauvagesia sharpei (Bayle), associated with few otherbivalve species. The upper part of the late Cenomanian

3)TD$FIG]

g. 3. Lithostratigraphy, ammonite zones and rudist range chart of Gebelusabaa Salama. Pseud. flexu. = Pseudaspidoceras flexuosum; Vas. proprium =scoceras proprium.

Page 4: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 4)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433412

Page 5: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 413

and the early Turonian sequence is devoid of any rudistbivalves.

In the Gebel Musabaa Salama section (Fig. 3), the lowermember of the Raha Formation is devoid of rudists but itcontains abundant oyster banks of Ilymatogyra Africana(Lamarck) and Ceratostreon flabellatum (Goldfuss). TheCenomanian rudists are reported from the lower part of theAbu Qada Formation from the Metoicoceras geslinianumammonite Zone of Zakhera (2001) (argillaceous limestone),including Eoradiolites cf. davidsoni (Hill). In the higherVascoceras cauvini ammonite Zone (argillaceous limestone),two assemblages are reported, including Eoradiolites syriacus(Conrad) and Requienia tortuosi nov. sp. (lower level); the otherassemblage (upper level; silty marl, late Cenomanian) includesRequienia tortuosi nov. sp., Toucasia carinata (Matheron),Apricardia carentonenis d’Orbigny, Eoradiolites liratus (Con-rad) and Eoradiolites lenisexternus nov. sp. The reportedCenomanian rudists are associated with abundant large-sizedoyster Exogyra (Costagyra) olisiponensis Sharpe, with otherbivalves, gastropods, and echinoids.

The early Turonian sequence just above the Cenomanian/Turonian boundary (upper part of Abu Qada Formation) isdevoid of any rudists. The Turonian rudists are reported from ahigher stratigraphic level than in the Wadi El Siq section, asthey are encountered within the upper part of the Choffaticerassegne Zone of the middle Turonian of the Wata Formation(dolomitic limestone), including Praeradiolites ponsianus(D’Archiac) associated with few oysters, other bivalves andgastropods.

3. Systematic paleontology

Terminology and systematic classification used by Decha-seaux et al. (1969), Skelton (1978), Steuber (2002), Pons et al.(1995) and Masse et al. (2007) are followed. The followingabbreviations are used: LV: left valve; RV: right valve; AV:attached valve; FV: free valve; BC: body cavity; L: ligamentalridge; lg: ligamental groove; ab: anterior band; pb: posteriorband; I: interband; P1: posterior pillar; P2: anterior pillar; am:anterior myophore; pm: posterior myophore; ct: central tooth;ats: anterior tooth socket; pts: posterior tooth socket; Tt:transverse tabulae. Superfamily names end with the suffix‘‘oidea’’ following the recommendation of the InternationalCode of Zoological Nomenclature, Article 29A (Ride et al.,1985). The material studied is deposited in the collections of theGeology Department, Aswan Faculty of Science, Aswan,Egypt, with the prefix MZ plus locality initials and serialnumbers. Figs. 4–7 illustrate the identified species.

Fig. 4. 1–8. Requienia tortuosi nov. sp. 1: MZMS100-1 holotype; 2 MZMS100-2socket, both filled with sediments but keeping their outlines, am = posterior myophorMZMS100-4, 4, well developed carina on LV, 5, coiled LV; 6: MZMS100-1, HoloMZMS100-6, slightly convex RV. late Cenomanian. 9–12. Apricardia carentonenis dconjoined; 11: MZMS100-8 side view of LV; 12: MZMS100-9, side view of RV. late10, RV views with smooth growth lamellae; 15: MZMS100-11, internal cast of slendeToucasia carinata (Matheron, 1842), MZMS100-13, left valve, late Cenomanian. 18–

of conjoined valves; 19: top view shows the operculiform LV conjoined with RVandScale bars = 1 cm.

Class BIVALVIA Linné, 1758Superfamily HIPPURITOIDEA Gray, 1848Family REQUIENIIDAE Douvillé, 1914Genus Requienia Matheron, 1843Type species: Chama ammonia Goldfuss, 1837.

Requienia tortuosi nov. sp.Fig. 4(1–8)Etymology: derived from the Latin ‘‘tortuosus’’, referring

to its spiral growth.Holotype: MZMS100-1 (Fig. 4(1, 6)).Type locality: Gebel Musabaa Salama, western Sinai,

Egypt.Material: fifteen shells, mostly articulated.Occurrence: lower part of the Abu Qada Formation, Gebel

Musabaa Salama, western Sinai.Age: Late Cenomanian.Diagnosis: shells highly inequivalve, spirally coiled LV (few

whorls) with well developed carina and fine radial striae onmain part of the valve exterior, LV muscles on shell wall, RVflat to slightly convex.

Description: shell small to medium in size. LV coiled.Attachment area small on the tip of the LV. Ornament nearlysmooth, growth lamellae crossed by fine radial striae. Growthlines bent on the posterior side of the LV, giving two spiral finegrooves that define the two radial bands. Anterior muscleinsertions are elongate on shell wall of both valves. RV smalland operculiform, flat to slightly convex. Posterior muscleinsertion of RV is on a projecting plate. Two teeth and onesocket in RV corresponding to one tooth and two sockets in theLV. The cardinal apparatus of the LV (Fig. 4(2)) shows roundedcentral tooth, small ats, large pts and elongated oval pm.

Remarks: the new species has the characteristic morpho-logical features of the genus Requienia (Fig. 8). It ischaracterized by two spiral fine grooves corresponding to thetwo radial bands (ab and pb) with presence of well developedcarina on LV, oblique myophoral plate of the RV parallel to thecommissure. Requienia ammonia (Goldfuss) as reported byDechaseaux et al. (1969) and Macé-Bordy (2007a) differs fromthe present species in having an LV with several whorls,prominent interband with two flat radial bands, posteriormyophore rises above the cardinal plate and growth wrinkles.Requienia calegari Parona, 1926 (Tarlao, 2005: pl. 69, fig. 1)differs from the present species in having a more tumid shellwith concentric growth lines, thin wall and wider cardinalapparatus. The present material has a uniform shell layeringwith coiled LV that makes it different from Requienia cf.zlatarskii Paquier from Turkey, which has lamellar anterior sideand smooth posterior side (Masse et al., 2004).

, coiled LV, ct = central tooth, ats = anterior tooth socket, pts = posterior toothe; 3: MZMS100-3, LV with coiled umbonal area and small attachment area; 4, 5:type with radial bands ab and pb; 7: MZMS100-5, conjoined LV and RV; 8:’Orbigny, 1850. 9, 10: MZMS100-7, anterior and posterior views of both valvesCenomanian. 13–16. Eoradiolites cf. davidsoni (Hill, 1893). 13, 14: MZMS100-r RV; 16: MZMS100-12, lower part of brocken cast of RV. late Cenomanian. 17.20. Radiolites lusitanicus (Bayle, 1857), MZWS200-14; 18: dorsa-anterior viewradial bands; 20: horizontally oriented RV showing a clear pb. late Cenomanian.

Page 6: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 5)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433414

Page 7: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 415

Genus Toucasia Munier-Chalmas, 1873Type species: Requienia carinata Matheron, 1843Toucasia carinata (Matheron, 1842)Fig. 4(17)1842. Requienia carinata - Matheron, pl. 176, pl. 2, figs. 1, 2.1867–1870. Requienia lonsdalii d’Orbigny - Pictet and

Campiche, pl. 14, pl. CXLI, fig. 2a–c.1887. Toucasia carinata - Douvillé, pl. 762, pl. 28, fig. 2.1903. Toucasia carinata - Paquier, pp. 10, 22, 35, 41, pl. 5,

figs. 4, 5, pl. 6, figs. 1, 2.1915. Toucasia carinata - Douvillé, pl. 385, T-fig. 2, pl. 11,

fig. 3, 4.1994. Toucasia carinata - Czabalay, pp. 211, 213, pl. 1,

figs. 4, 6, 7, pl. 2, figs. 2, 4, pl. 3, fig. 6.1998. Toucasia carinata - Masse et al., pl. 196, text-fig. 3,

fig. 4(3).1969. Toucasia carinata - Dechaseaux et al., pl. N781,

fig. E246, 5, E249, 2.1998. Toucasia carinata - Schöllhorn, pl. 66, pl. 15, figs. 1–

7, text-fig. 31.2002a. Toucasia carinata - Chikhi-Aouimeur, pl. 118, pl. 1,

fig. b.2004. Toucasia carinata - Masse et al., pl. 80, fig. 5b.2007a. Toucasia carinata - Macé-Bordy, p. 164, fig. 3B, C.

Material: two specimens from the lower part of the AbuQada Formation, Gebel Musabaa Salama, western Sinai.

Age and occurrence: this species was previously reportedfrom the same late Cenomanian age interval in NE-Sinai(Areif en Naqa; Bartov et al., 1980). According to Chikhi-Aouimeur (2002b) and Masse et al. (1998, 2004), it is known:in the lower Cretaceous (Aptian) of North Africa and Europe(Algeria, Tunisia, Spain); Barremian-early Aptian (Bosnia,Bulgaria, Turkey, France, Yugoslavia, East Serbia); lateBarremian-Albian (Hungary, western Black Sea); lateBarremian-early Aptian (Italy, Romania). Tarlao (2005)reports the species in the Cenomanian of Croatia, France,Turkey, and Italy.

Description: shell medium in size, inequivalve, spirallytwisted with keeled valves. A sharp carina encircles the valvefrom umbo to the commissure. LV larger than RV. Weaklyimpressed radial bands on posterior side of LV. LV toothslightly projecting. The shell is thin and lacks internal structuresand myophoral protrusions.

Remarks: Toucasia patagiata (White) from the Albiandeposits of Texas, differs from the present species in having atall spiral left valve (2–3 volutions), very inequivalve, obviousattachment area, irregular keel and irregular wrinkled surface.

Fig. 5. 1–4. Eoradiolites liratus (Conrad, 1852), MZWS200-15; 1: right valve (RVand interband (I); 3: anterodorsal view showing ligamental groove (lg); 4: top vie(Conrad, 1852). 5–7: MZMS100-16, 5, ventral view of arcuate RV, 6, dorsal viewMZMS100-17, transverse section of RV; 9: MZMS100-18 straight short RV with po1835). 10, 11: MZMS100-19, 10, anterior view of RV, 11, longitudinal section ofshowing the folded lamella of ab and pb and the down folds of the interband (I), 13MZMS100-21 broken RV with pointed base; 15: MZMS100-22 field view of individulayer of cylindrical RV. middle Turonian. 17–19. Sauvagesia sharpei (Bayle, 1857),posterior view of RV, showing ab, pb and I; 19: posterodorsal view, showing pb a

T. carinata is characterized by a significant coiling; the ratio ofthe distance between the anterior and posterior flanks to thedistance between the dorsal and ventral flanks of the RV is 0.6 to0.7 according to Masse et al. (1998).

Genus Apricardia Guéranger, 1853Type species: Apricardia carinata Guéranger, 1853

Apricardia carentonenis (d’Orbigny, 1850)Fig. 4(9–12)1850. Requienia carantonensis - d’Orbigny, pl. 259, pl. 592.1901. Apricardia carentonensis - Parona, pl. 199, pl. 1,

fig. 1a, b.1903. Apricardia carentonensis - Franchis, pl. 160, pl. 6,

fig. 18–21.1973. Apricardia carantonensis - Berthou, pp. 35, 46, 97,

pl. 52, fig. 2.1983. Apricardia carentonensis - Berthou, pl. 23, text-fig. 3.1988. Apricardia carentonensis - Accordi et al., pl. 138,

text-fig. 5.1995. Apricardia carentonenis - Mainelli, 196, fig. 2a.1998. Apricardia carentonensis - Laviano et al., pp. 171, 174.2005. Apricardia carentonenis - Tarlao, p. 1, fig. 3, 4, 7, 8.2006b. Apricardia carentonenis - Chikhi-Aouimeur et al.,

pl. 201, fig. 2(1–5, 8,10).2007a. Apricardia carantonensis - Macé-Bordy, p. 168,

Fig. 3D.

Material: four specimens, two of which are articulatedshells and two right valves from the lower part of the Abu QadaFormation, Gebel Musabaa Salama, western Sinai.

Age and occurrence: Cenomanian to late Cenomanian ofFrance, Italy, Libya, Algeria, Portugal, and Croatia (Berthou,1973; Accordi et al., 1988; Tarlao, 2005; Chikhi-Aouimeuret al., 2006b). This species is reported in this study in the lateCenomanian of western Sinai, Egypt.

Description: shell small in size, inflated, attached by LV,inequivalve with RV smaller than LV. RV is characterized bymyophore plate on which the posterior adductor scar appears.Both valves coiled, posterior convex, anterior concave, carinarounded, strong. Commissural plate oblique.

Remarks: the morphological feature of a flat base oppositeto the umbonal area suggests that some individuals settled onthe substrate in a recumbent mode (Fig. 4(10)). This is the firstrecord of this species in Egypt. The material identified asApricardia sp. from the Maastrichtian of northern Somalia byPons et al. (1992: pl. 222, text-fig. 4a–c) has a similar generalform but A. carentonenis differs in having a smaller size, anarrower venter, and a stronger carina.

), showing the radial costae; 2: posterior view showing the radial bands (ab, pb)w showing the operculiform LV. late Cenomanian. 5–9. Eoradiolites syriacus

showing ligamental groove (lg), 7, posterior view showing ab, pb and I; 8:sterior features, late Cenomanian. 10–16. Praeradiolites ponsianus (D’Archiac,RV showing thick outer shell layer; 12, 13: MZMS100-20, 12, posterior view, longitudinal section of RV showing thicker outer shell layer at valve base; 14:als (A-E) with different orientations; 16: MZMS100-23 shows broken outer shellMZWS200-24; 17: anterodorsal view, showing the ligamental groove (lg); 18:

nd I. middle Turonian. Scale bars = 1 cm.

Page 8: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 6)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433416

Page 9: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 417

Family RADIOLITIDAE Gray, 1848Genus Radiolites Lamarck, 1801Type species: Ostracites angeiodes De Lapeirouse, 1781

Radiolites lusitanicus (Bayle, 1857)Fig. 4(18–20)1857. Sphaerulites lusitanicus - Bayle, pl. 692.1886. Sphaerulites lusitanicus - Choffat, pl. 32, pl. 4, figs. 2–7.1886. Sphaerulites peroni - Choffat, pl. 33, pl. 5, figs. 1–7.1902. Sphaerulites lusitanicus - Choffat, pl. 4, figs. 1–5.1904. Radiolites peroni - Douvillé, pl. 246, pl. 33, figs. 7, 8.1908. Radiolites lusitanicus - Toucas, pl. 62, pl. 11,

figs. 10, 11.1908. Radiolites peroni - Toucas, pl. 61, pl. 11, figs. 1–9.1967. Radiolites lusitanicus - Polsak, pp. 59, 173, pl. 27,

figs. 1–7, pl. 28, figs. 1–9, pl. 29, figs. 1–7.1973. Radiolites peroni - Berthou, pl. 97, pl. 56, fig. 3.1973. Radiolites lusitanicus - Berthou, pl. 97, pl. 55, fig. 1.1989. Radiolites peroni - Yanin, pp. 15, 174, pl. 12, figs. 2, 31996. Radiolites peroni - Caffau et al., pl. 96, pl. 4, fig. 3.1996. Radiolites peroni - Paris and Sirna, pl. 191, pl. 1, fig. 7.1999. Radiolites lusitanicus - Steuber, pl. 95-98, pl. 15,

figs. 1–6, pl. 16, figs. 1–5 (with syn. list).

Material: four specimens from the Raha Formation of WadiEl Siq (level A), two with associated valves.

Age and occurrence: the species is reported fromCenomanian strata in Libya, Tunisia, Portugal and Albania(Pervinquiére, 1912; Berthou, 1973; Peza and Pirdeni, 1994);Turonian in France, Greece, Slovenia, Bulgaria, Spain, Iran,Lebanon (Douvillé, 1904, 1910; Toucas, 1908; Plenicar, 1973;Steuber, 1999, 2002); Cenomanian to Turonian in Yugoslavia,Egypt and Italy (Polsak, 1967; Caffau et al., 1996; Metwallyand Abd El Azeam, 1997); Cenomanian to Coniacian inCroatia; Turonian to Coniacian in Bosnia (Steuber, 2002). Thespecies is reported here in the late Cenomanian of westernSinai. According to Steuber (1999), this species is reportedfrom the late Cenomanian rocks of southwestern Europe,Albania, Egypt, Afghanistan, and Tunisia.

Description: shell large in size with thick growth laminae.RV larger than the flat to slightly concave operculiform LV. RVexternal surface is characterized by highly folded growthlaminae giving radial ornament in the upper part of the valve.On the ventral side, ab is slightly wider than pb. Ligamentalridge (L) very small, subrounded at its distal part. The interband(I) is grooved. LV has a rounded perimeter, concentricallyornamented. The outer shell layer of RV (Fig. 9(4)) ischaracterized by rectangular cell structures in transverse

Fig. 6. 1–12. Eoradiolites lenisexternus nov. sp. 1, 2: MZMS100-25, ventral and doranterodorsal view of cylinderoconical RV, 4, posteroventral view of the same valMZMS100-27, 5, posterodorsal view of curved conical RV, showing a fissure coincshowing the ab; 7, MZMS100-28, curved cylinderoconical RV with clear I; 8: MZMSab, pb and I; 9: MZMS100-30, posterior view of RV; 10: MZMS100-31, transverseinterior view of RV, showing the transverse tabulae (Tt); 12: MZMS100-33, top view14: MZWS100-34, cylinderoconical RV, posterodorsal and anteroventral views respethe undulating growth lamellae at radial bands (ab, pb) and interband (I); 17-18: MZWtop view of RV showing short triangular ligamental ridge (L). late Cenomanian. 20, 2showing flat, smooth, concentrically ornamented LV with rounded oscules; 21: sideScale bars = 1 cm.

section. Subpolygonal cells are reported in the inner marginof the outer shell layer.

Remarks: this species was originally designated asSphaerulites lusitanicus by Bayle (1857: pl. 692). Amorphological coincidence with the material described asSphaerulites peroni Choffat, 1886 (pl. 33, pl. 5, figs. 1–7) isfound. According to the priority, the older name is used andthen revaluated as Radiolites lusitanicus. Steuber (1999)reviewed this issue and concluded that the number of plicationsin the interband was variable within the species. In addition,both taxa have been reported in the same localities and have thesame stratigraphic range (Berthou, 1973; Philip et al., 1989).Radiolites matheroni Toucas (1907) of France and Croatia has ageneral similarity with the present material but differs in havinghighly raised growth lamellae of RV with narrowly foldedposterior side, and having a convex operculum dome-like LV.

Genus Eoradiolites Douvillé, 1909Type species: Radiolites davidsoni Hill, 1893.

Eoradiolites sp. cf. E. davidsoni (Hill, 1893)Fig. 4(13–16)1886. Sphaerulites sharpei Bayle - Choffat, pl. 29, pl. 2,

figs. 6–8 (non 1–5).Material: ten specimens, mostly RV from basal part of the

Abu Qada Formation, Musabaa Salama.Age and occurrence: Late Cenomanian in western Sinai,

Egypt. Eoradiolites davidsoni (Hill) is a well known speciesfrom Albian to Cenomanian rocks of Mexico, Egypt and Iran(Douvillé, 1904, 1915; Adkins, 1930). It is also reported fromearly to late Albian of Texas and Mexico (Scott, 1990;Alencáster and García-Barrera, 2008).

Description: shell medium in size. RV slender, smooth,mostly straight, rarely slightly curved, with suborbicularoutline. Interband (I) wider than pb and ab. Concentric growthlines ornament the valve surface. RV wall is composed of twolayers, the inner layer thin and the outer layer thicker. Theexternal layer with the lamellae is mostly broken away, so thevalve appears smooth and the radial bands do not appear assalient ridges. LV operculiform, convex. The structure of theouter shell layer is represented by radially elongatedrectangular cells in the transverse section.

Remarks: Albian E. davidsoni differs from the presentmaterial in having moderately arcuate shells with prominentsmooth radial bands and longitudinal costae on AV. This is ahighly-variable species; its shape could be distorted by externalobstacles during different growth stages; most of the variationsare related with the manner of growth, such as the crowded

sal views of conjoined conical RVand LVof the Holotype; 3, 4: MZMS100-26, 3,ve, showing the broad anterior band (ab) and the narrow interband (I); 5, 6:iding with the ligamental groove (lg), 6, posteroventral view of the same valve,100-29, transverse section of LV, showing the relatively thin outer shell layer, L,section of RV, showing the outer shell layer, ab, pb and I; 11: MZMS100-32,LV. late Cenomanian. 13–19. Praeradiolites biskraensis (Coquand, 1880). 13,

ctively; 15–16: MZWS100-35, posterior and posterodorsal views of RV showingS100-36, two opposite views of slim cylinderoconical RV; 19: MZWS100-37,

1. Sphaerulites agariciformis Delamétherie (1805), MZWS200-38, 20: top viewview showing conjoined RV and LV with thick growth layers, late Cenomanian.

Page 10: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 7)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433418

Page 11: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 419

conditions and the topography of the substratum (Alencásterand García-Barrera, 2008). The material identified by Choffat(1886) as Sphaerulites sharpei Bayle (pl. 2, figs. 6–8, non 1–5)is considered a synonym of the present species because it has anelongate slim valve with similar ornamental feature.

Eoradiolites liratus (Conrad, 1852)Fig. 5(1–4)1852. Hippurites liratus - Conrad, pl. 234, pl. 7, figs. 47–48.1910. Eoradiolites lyratus - Douvillé, p. 70, pl. 1, figs. 2–4;

pl. 4, fig. 6; pl. 5, fig. 3.1926. Eoradiolites liratus - Parona, pl. 33, pl. 3, fig. 10.1926. Eoradiolites lyratus - Douvillé, pl. 346, pl. 12,

fig. 1a, b.1959. Eoradiolites lyratus - Nazemi and Grubic, pl. 946,

pl. 46, fig. 4.1995. Eoradiolites cf. liratus - Caffau and Plenicar, p. 231,

pl. 7, fig. 1a, pl. 8, fig. 1.1998. Eoradiolites lyratus - Masse et al., pl. 54, text-

figs. 9.1–4.2000. Eoradiolites lyratus - Skelton and Masse, pl. 92, text-

fig. 2.8.2002. Eoradiolites lyratus - Steuber and Bachmann, p. 738,

text-figs. 8a, b, 9a.2002b. Eoradiolites lyratus - Chikhi-Aouimeur, pl. 61, pl. 1,

figs. 3, 4.2004a. Eoradiolites liratus - Abdel Gawad et al., pl. 293,

pl. 9, figs. 8, 9.2005. Eoradiolites liratus - El-Hedeny and El-Sabbagh,

pl. 555, figs. 6–9.2005. Eoradiolites liratus - Aly et al., pl. 256, pl. 1, figs. 4–8.2007. Eoradiolites liratus - Mekkawy, pl. 227, pl. 4,

figs. 11, 12.2008. Eoradiolites liratus - Zakhera, pl. 18.

Material: twelve specimens, majority is RV, from the RahaFormation of Wadi El Siq (level A), Wadi El Bagha andMusabaa Salama.

Age and occurrence: Late Cenomanian of Egypt (in bothSinai and Eastern Desert), Morocco, Somalia and Algeria(Douvillé, 1910; Chikhi-Aouimeur, 2002b; Zakhera, 2008);early Turonian in Lebanon, Syria, Italy and Croatia (Blancken-horn, 1890; Parona, 1926; Polsak and Mamuzic, 1969; Masseet al., 1998). It is also recorded from Turonian of Mexico, Iranand Afghanistan (Nazemi and Grubic, 1959; Steuber, 2002);Albian to Cenomanian rocks in Sinai by Douvillé (1913) and

Fig. 7. 1, 2. Sphaerulites agariciformis Delamétherie (1805), MZWS200-39; 1, postronger at the central part, 2, fracture section of the same valve, showing body cavitSphaerulites depressus Blanckenhorn (1934). 3: MZWS200-40, separated shell laMZWS200-41, 4, posterior view of RV, showing the radial bands ab, pb and interbandlayer, thick outer shell layer and radial bands; 6: MZWS200-40, fractured tangential santerior view of RV, showing undulating growth lamellae giving strong radial ribs, 8thick outer shell layer, and the commissure plate (C), 9, close up view of the spotCenomanian. 10–14. Vaccinites cf. grossouvrei (Douvillé, 1894), MZWS200-43cylindroconical right valves; 12, 13: transverse sections at the upper third of the RV(13) the transverse cutting plane; 14: close up view of 13, showing undulating inner mand radial pillars P1 and P2, middle Turonian. 15–17. Hippurites resectus Defrancligamental ridge (L) and posterior pillar (P1) shorter and thicker than the anterior pillaRV, showing the external grooves corresponding to internal pillars P1, P2 and L. m

Steuber and Bachmann (2002); middle Albian of Oman, Spainand SW France (Masse et al., 1997). The species is widelydistributed geographically in the Tethyan realm and commonlyfound in the Mediterranean area.

Description: shell medium to large in size, conical shapewith subrounded to suboval transverse section outline. RV bearsregular radial costae along the valve length crossed by growthlaminae at intervals. The valve grew upward regularly withprogressive diameter; ab is thinner than pb with concavesurfaces. The interband (I) is represented by radial furrow,deeply sunken at the top of the valve. The ligamental groove isobvious with short trapezoidal ligamental ridge. LV operculi-form with concentric lamination. The outer shell layer of RV(Fig. 9(1–3)) is characterized by rectangular cell structure intransverse section, while in tangential section it displays foldedbands with regular rectangles. Compact spots are reported.Subpolygonal cells at the distal part of the outer layer of RVareencountered, leading to radial elongate rectangular cells at theoutermost part of the layer.

Remarks: the structure of the outermost part of the shelllayer of this species could be interpreted as continuous radialridges pattern of Pons and Vicens (2008). Eoradiolites zucchiiCaffau and Plenicar, 1991, from the Cenomanian of Italy andCroatia differs from the present species in having thin lamellaethat in places are spaced from the valve body, and the interbandbears three ribs. With its ribbed shell Steuber and Bachmann(2002) considered E. liratus, an end member of a chronospecieslineage starting with Eoradiolites plicatus (Conrad, 1852) withfaintly ribbed and wider radial bands, then passing toEoradiolites murgenis Torre, 1965. Eoradiolites davidsoni(Hill, 1893) as described by Douvillé (1913) differs fromE. liratus in having elongate, slim, small, thin, nearly smoothshells with some concentric lamellae at RV base and ab twice aswide as pb.

Eoradiolites syriacus (Conrad, 1852)Fig. 5(5–9)1852. Hippurites syriacus - Conrad, 266, pl. 16, fig. 84.1867. Hippurites syriacus - Frass, pl. 85, pl. 1, fig. 7.1929. Eoradiolites liratus var. congregate - Klinghardt,

pl. 95, pl. 12–14.1934. Eoradiolites syriacus - Blanckenhorn, pl. 225, pl. 11,

figs. 93–96.

Material: eight specimens, RVs and few are articulated,from Abu Qada Formation at Musabaa Salama.

sterodorsal view of RV, showing undulating growth lamellae giving radial ribs,y (BC), thin inner shell layer and thick outer shell layer, late Cenomanian. 3–9.mellae from the basal part of RV, showing smaller body cavity (BC); 4, 5:(I), 5, fractured radial section of RV, showing body cavity (BC), thin inner shell

ection of the left part of 3, showing the cellular structure; 7–9: MZWS200-42, 7,, fractured section of RV, showing body cavity (BC), thin inner shell layer, veryC of 8, showing the commissure plate (CP), relicts of LV attached to RV. late; 10, 11: two views of compact cluster, showing the external features of, showing cluster of individuals and the internal pillars above (12) and belowargin of outer shell layer (right side of the photo), distinct ligamental ridge (L)

e (1821), MZWS200- 44; 15: top view RV, showing relatively long triangularr (P2); 16: posterodorsal view of RV, showing the L and P1; 17: posterior view ofiddle Turonian. Scale bars = 1 cm.

Page 12: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 8)TD$FIG]

Fig. 8. Sketch drawing showing the morphology of the genus Requienia(modified after Cestari and Sartorio, 1995).

M.S. Zakhera / Geobios 44 (2011) 409–433420

Age and occurrence: Late Cenomanian of western Sinai ofEgypt and Cenomanian of Syria, Lebanon and Palestine (Frass,1867; Blanckenhorn, 1934).

Description: shell medium to large in size, upright conicalto arcuate shape. The attached valve is the RV; it grew bydifferent rates, giving a narrow base and broad top. RVornamented by regular weak radial ribs evenly spaced aroundthe shell, crossed by faint growth laminae ab broader than pb.The interband (I) narrow. The ligamental groove is obvious andnarrow. LV thin, operculiform with closely spaced concentriclamination. The outer layer structure of RV (Fig. 9(5, 6)) ischaracterized by regular rectangular cells interlayered withcompact structure in the transverse section.

Remarks: the present species differs from Eoradiolitesliratus (Conrad, 1852) in having less pronounced smoothradials with narrow interspaces, mostly arcuate shells anddifferent radial bands width. It is very similar to Eoradiolitesadriaticus Caffau and Plenicar, 1994 (Tarlao, 2005) from Italyand Croatia, but the latter has an elongate slender RV withwidely spaced, sharp vertical ribs, highly undulated posteriorregion, and thin flat LV.

Eoradiolites lenisexternus nov. sp.Fig. 6(1–12)Etymology: derived from the Latin words ‘‘lenis’’ as

smooth and ‘‘externus’’ as exterior, referring to the smoothexterior.

Holotype: MZMS100-67 (Fig. 6(1, 2)).Type locality: Gebel Musabaa Salama, western Sinai,

Egypt.Material: fourteen specimens of both valves.Age: Late Cenomanian of the western Sinai of Egypt.Occurrence: Lower part of the Abu Qada Formation,

Musabaa Salama, western Sinai.Diagnosis: conical to cylinderoconical RV, thick walled; LV

rounded domal; transverse tabulae on RV interior; low roundedligamental ridge; smooth growth laminations on RV surface; nolongitudinal radial ribs. The outer shell layer of RV showsrectangular cellular structure.

Description: shell medium in size, attached by RV. RVconical to cylinderoconical shape, curved to moderatelyarcuate. Conical forms are shorter. Thick walled RV. Distincttransverse tabulae impressed on the interior of the right valvesurface with interspaces wider than the tabulae (Fig. 10). RVornamented by smooth broad growth laminations with evensurfaces. Ligamental ridge low, triangular, truncated at its distalpart. The radial area is represented by folded lamination. Theconvex upward growth lines mark the interband ab is wider thanpb but has the same attitude, separated by narrow interband (I).In the transverse section, the outer layer of RV (Fig. 9(7)) showsrectangular cellular structure. The rectangular cells are ofdifferent size and orientations, and arranged radially inalternative zones. LV smaller than RV, rounded, domal,operculiform and concentrically laminated.

Remarks: the present material differs from other Eoradio-lites species in having no obvious radial ribs or rough lamellae.This new species has internal transverse tabulae similar toEoradiolites (Dechaseaux et al., 1969: pl. N760, fig. E229). Theconical form of the present species is somewhat similar toRadiolites scotti Alencáster and García-Barrera, 2008 from theAlbian of East-Central Mexico, but the latter is shorter and differsin the nature of radial bands and the style of ornamentation. Somevarities of the material identified as Radiolites lewyi obtususParnes, 1987 from the Turonian of Gebel Er-Risha, northeastSinai, show some similarity to the conical forms of this newspecies but R. lewyi obtusus differs in having strong externallamellae that are recurved and arched in ab and become concavein the interband. The material identified as Sphaerulites cf.foliaceus? (Blanckenhorn, 1934: pl. 229, pl. 12, fig. 1, non fig. 2)is quite similar to the present species and could be includedwithin it. The high convex LV, which is the freevalve is somewhatsimilar to the genus Radiolites but the new species does not havestrong ribs or shallow depressed radial bands. The presence ofcylinderoconical and conical forms reflects a specific habitatrelated to density of individuals and sedimentation rate. Thevariability of shell form is achieved by other Eoradiolires species(El-Hedeny and El-Sabbagh, 2005).

Genus Praeradiolites Douvillé, 1902Type species: Radiolites fleuriaui d’Orbigny, 1842.

Praeradiolites ponsianus (D’Archiac, 1835)Fig. 5(10–16)1835. Sphaerulites ponsiana - D’Archiac, pl. 182, pl. 11,

fig. 6a–g.1850. Radiolites ponsiana - d’Orbigny, pl. 210, pl. 552,

figs. 1–5.1904. Praeradiolites ponsianus - Douvillé, pl. 244, pl. 33,

figs. 1, 2, 4.1907. Praeradiolites ponsianus - Toucas, pl. 30, pl. 3,

figs. 3, 4.1913. Praeradiolites ponsianus egyptiaca - Douvillé,

pl. 248, pl. 2, figs. 1, 2.1971. Praeradiolites ponsianus aegyptiacus - Berizzi Quarto

Di Palo, pl. 524, pl. 39, fig. 11.1987. Durania humei Douvillé - Kora and Hamama, pl. 296,

pl. 1, fig. 10.

Page 13: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 421

1999. Praeradiolites ponsianus - Steuber, pl. 91–92, pl. 12,figs. 1, 2, text-fig. 38A (with syn. list)

2004a. Praeradiolites ponsianus aegyptiacus - AbdelGawad et al., pl. 9, figs. 7, 10.

2005. Praeradiolites ponsianus - Aly et al., pl. 259, pl. 3,figs. 4–6, pl. 4, figs. 1–5.

2007b. Praeradiolites ponsianus - Macé-Bordy, pl. 78,fig. 2D–F; fig. 3D, E.

Material: ten specimens, mostly broken RV, from lower partof the Wata Formation, Musabaa Salama.

Age and occurrence: Middle Turonian of westernSinai, Egypt. Turonian of France, Algeria, Iran, Lebanon,Greece and Croatia (Toucas, 1907; Parona, 1935; Polsakand Mamuzic, 1969; Steuber, 1999); Cenomanian-Turonianof Tunisia (Pervinquiére, 1912; Berizzi Quarto di Palo,1971).

Description: shell medium in size, attached by cylindrical,thick walled RV. Growth laminae of RV tightly and smoothlyconstructed; ab and pb defined by folding of growth lamination.Interband (I) wider than the radial bands and defined by downfolding of the growth lamination towards the valve base. RVattachment base tapered; LValmost flat. The outer shell layer ofthe RV (Fig. 9(8)) is composed of polygonal (penta-hexagonal)cellular structure; the innermost part of the layer showsrectangular cells, parallel to the layer surface by their longerdiameter.

Remarks: the material identified by Kora and Hamama(1987) as Durania humei Douvillé has obvious folded growthlamella defining the radial bands ab and pb, so the material isincluded as a synonym of the present species. Radiolites lewyiobtuses Parnes, 1987 (pl. 142, pl. 3, figs. 9–13) from lateTuronian of northeast Sinai has an external ornamentalsimilarity with the present species. Douvillé (1913) mentionedthat the only difference between Praeradiolites var. aegyptiacaand P. ponsianus is the presence of additional folded lamellaeposterior to the posterior band of the earlier species. Thisfeature was observed in RVof Boeotian material of P. ponsianus(Steuber, 1999). Sphaerulites peroni Choffat of Dacqué, 1903(pl. 375, pl. 36, figs. 1, 2) was considered to be a synonym ofPraeradiolites ponsianus egyptiaca Douvillé (Steuber, 2002).In his database Steuber listed P. ponsianus and P. aegyptiaca asseparate species according to their references, but in his paperon rudists of Boeotia, he lumped them together as synonyms(Steuber, 1999). The material identified by Dacqué (1903) asSphaerulites peroni Choffat has undulating prominent con-centric growth lamellae on the attached RV and thus differsfrom the present species.

Praeradiolites biskraensis (Coquand, 1880)Fig. 6(13–19)1880. Sphaerulites biskraensis - Coquand, pl. 194.1889–1893. Radiolites biskraensis - Peron, pl. 286, pl. 28,

figs. 17–19.1912. Praeradiolites biskraensis - Pervinquiére, pl. 307,

pl. 21, figs. 10a, b, pl. 23, figs. 3a, b, 4.1971. Praeradiolites biskraensis - Berizzi Quarto Di Palo,

pl. 522, pl. 39, figs. 7, 8.

1972. Praeradiolites biskraensis - Bartov et al., pp. 72, 75,text-fig. 3.

1994. Praeradiolites biskraensis - Razgallah et al., pl. 508,text-figs. 2–4, 6, 17.

2002a. Praeradiolites biskraensis - Chikhi-Aouimeur,pl. 121, pl. 2, fig. b.

2004a. Praeradiolites biskraensis - Abdel Gawad et al.,pl. 285, pl. 9, figs. 1,3.

Material: fourteen specimens, mostly RV and associatedvalves, some of which are broken or fragmented from the RahaFormation of Wadi El Siq (level C).

Age and occurrence: Late Cenomanian of western Sinai,Egypt, and Tunisia, Libya, Palestine (Parona, 1921; Bartovet al., 1972; Razgallah et al., 1994). Turonian of Algeria, andCroatia (Polsak and Mamuzic, 1969; Chikhi-Aouimeur,2002a).

Description: shell medium in size, conical to cylinder-oconical, slender at base, wide at top, attached by RV.Ligamental ridge short, triangular. Ligamental groove deep. RVornamented by tight smooth folded growth lamellae, becomeprotruding in the upper part of the valve. Thin short radialriblets also appear on the upper part of RV. Radial bandexpressed as folded laminations. RV devoids of stronglongitudinal ribs. The outer layer of RV (Fig. 11(1, 2, 8)) iscomposed of rectangular cellular structure in the transversesection. The cells appear elongated in the longitudinal section.

Remarks: the late Cenomanian sequence yieldsP. biskraensis, which is a widespread species and alwaysfound below Neolobites vibrayeanus along the southern marginof the Tethys. P. biskraensis is a good marker from Morocco tothe Middle East (Chikhi-Aouimeur et al., 2006a, 2008). Theexfoliation of the external protruding folded lamination makesmost of the specimens appear smooth (Fig. 6(17, 18)).

Genus Sphaerulites Lamarck, 1819Type species: Sphaerulites foliaceus Lamarck, 1819

Sphaerulites agariciformis Delamétherie, 1805Figs. 6(20, 21) and 7(1, 2)1805. Sphaerulites agariciformis - Delamétherie, 396,

pl. 57, fig. 12.1825. Sphaerulites agariciformis - Blainville, 516, pl. 57,

fig. 1.1887. Radiolites foliaceus Lamarck - Fischer, pl. 1065, text-

fig. 821.1840. Hippurites agariciformis - Goldfuss, pl. 298, pl. 164,

figs. 1a, b.1850. Radiolites agariciformis - d’Orbigny, p. 200, pl. 544 et

545.1903. Sphaerulites peroni Choffat - Dacqué, pl. 375, pl. 36,

figs. 1, 2.1908. Sphaerulites foliaceus Lamarck - Toucas, pl. 52, pl. 9,

figs. 2, 3, text-figs. 22–25.1934. Sphaerulites foliaceus - Blanckenhorn, pl. 228, pl. 11,

figs. 99, 100.1969. Sphaerulites foliaceus - Dechaseaux et al., pl. N810,

fig. E220, 5, E240, 2.

Page 14: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 9)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433422

Page 15: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 10)TD$FIG]

RV

LV

lg

A

B

CD

RV (interior) LV (transverse section)articulated valves

LV (outside)

Tt

1cm

Fig. 10. Eoradiolites lenisexternus nov. sp. A: Articulated LVand RV with ligamental groove (lg); B: Thick external layer of RVand transverse tabulae (Tt); C: Thinexternal layer of LV in transverse section; D: Domal LV from outside.

M.S. Zakhera / Geobios 44 (2011) 409–433 423

1988. Sphaerulites foliaceus - Yanin, pl. 288, pl. 17, fig. 5.1992. Sphaerulites foliaceus - Lupu, pl. 354, text-figs. 6, 7.2007b. Sphaerulites agariciformis - Macé-Bordy, pl. 94,

fig. 1G.Material: eight specimens, including RVand a few LV from

the Raha Formation in Wadi El Siq and Wadi El Bagha.Age and occurrence: Late Cenomanian of western Sinai,

Egypt; also in Syria, Palestine, and Lebanon (Blanckenhorn,1934). According to the database of Steuber (2002), the so-called S. foliaceus was reported in Cenomanian of Afghanistan,Belgium, France, Spain, Romania, Slovenia, and Libya.

Description: shell medium to large in size, vase shape. RVbroad flattened, foliaceous. External wall weakly undulatinggiving radial ribs on the main part of the RV, crossed byconcentric growth lamellae. Ligamental ridge (L) elongated pbdeeper than ab. Interband (I) raised, as wide as both bands(depressed), bearing two less prominent costae. LV flat, smooth,concentrically ornamented, bearing rounded oscule. The outerlayer of RV shows coarse rectangular, radially elongated cellularstructure in the transverse section (Fig. 11(3, 4)).

Remarks: Sphaerulites and Praeradiolites cannot beapplied to pre-Cenomanian Radiolitidae. Eoradiolites wasthe foremost genus in late Aptian-Albian times in terms ofspecies biodiversity (Masse et al., 2007). Eoradiolitescantabricus of the northwestern Mediterranean Tethyan marginmay have been the ancestor of Sphaerulites (Masse et al.,2007). S. agariciformis is considered the prior synonym ofS. foliaceus Lamarck (1819) according to Blainville (1825) andMacé-Bordy (2007b).

Sphaerulites depressus Blanckenhorn, 1934Fig. 7(3–9)1934. Sphaerulites depressus - Blanckenhorn, pl. 229, pl. 12,

figs. 104–106.

Fig. 9. 1–3. Eoradiolites liratus (Conrad, 1852); 1: tangential fractured section of th2: magnification of the middle part of 1; 3: transverse polished section at the distal parrectangles at the outermost part of the layer. 4. Radiolites lusitanicus (Bayle, 1857),(Conrad, 1852); 5: transverse polished section of the outer layer of RV, showing the ccell network of the cellular structure in transverse section. 7. Eoradiolites lenisexstructure, the rectangles are of different diameter and arranged radially as zones inpolished section, showing polygonal (penta-hexagonal) cellular structure, the repla

Material: eight specimens, mostly RV, from the RahaFormation of Wadi El Siq (level B).

Age and occurrence: Late Cenomanian of western Sinai,Egypt. Cenomanian of Syria, Lebanon and Palestine (Blanck-enhorn, 1934).

Description: shell large in size, vase shape with relativelysmall body cavity. RV broad, thick walled. External wall of theRV strongly folded, giving strong prominent radial ribs at thevalve base, crossed by short concentric growth lamellae pbwider than ab. Interband high, less wide. LV flat, smooth,concentrically ornamented. The outer layer of RV (Fig. 11(5–

7)) is composed of regular rectangular structure in thetransverse section.

Remarks: the species is different from Biradiolitesdepressus Toucas, 1909 from early-middle Santonian ofFrance. The material identified as Radiolites depressus(Cornalia and Chiozza) by Parona (1926), which is known inthe Coniacian of Croatia and Santonian-Campanian of Italy andIran (Steuber, 2002; Tarlao, 2005), is completely different fromthe present material in shell size and shell features. The big,thick shell, small shell cavity and the layering style of thespecies recall Praeradiolites hoeninghausi (Des Moulins,1826) from the Maastrichtian of northern Somalia describedby Pons et al. (1992: pl. 235, text-fig. 18a, b). Sphaerulites ischaracterized by foliaceous growth laminae, undulating,depressed radial bands flanked by folds and correspondinginternally with two convex inward bulges (Masse et al., 2007:pl. 698).

Genus Sauvagesia Choffat, 1886Type species: Sphaerulites sharpei Bayle, 1857.

Sauvagesia sharpei (Bayle, 1857)Fig. 5(17–19)1857. Sphaerulites sharpei - Bayle, pl. 690.

e outer layer of RV, the right side of the photograph leads to longitudinal section;t of the outer layer of RV, showing subpolygonal cells, leading to radial elongatetransverse fracture section of the outer layer of RV. 5, 6. Eoradiolites syriacus

ellular structure (Ce) and compact recrystalised structure (Co); 6: nearly square-ternus nov. sp., transverse polished section, showing the rectangular cellularrhythmic manner. 8. Praeradiolites ponsianus (D’Archiac, 1835), transverse

cement obscures the cells boundary in the middle part of the photograph.

Page 16: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 11)TD$FIG] M.S. Zakhera / Geobios 44 (2011) 409–433424

Page 17: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 425

1886. Sphaerulites sharpei - Choffat, pl. 29, pl. 2, figs. 1–5;pl. 3, figs. 1, 2.

1902. Sauvagesia sharpei - Choffat, pl. 171, pl. 8, fig. 14.1967. Sauvagesia sharpei - Polsak, pp. 85, 189, pl. 46,

figs. 1–5, text-fig. 24.1969. Sauvagesia sharpei - Dechaseaux et al., pl. N811,

fig. E238, 4.1973. Sauvagesia sharpei - Plenicar, pl. 190, pl. 2, fig. 1;

pl. 11, figs. 2, 3.1973. Sauvagesia sharpei - Berthou, pp. 46, 54, 97, pl. 53,

figs. 2–41989. Sauvagesia sharpei - Accordi et al., pl. 165, pl. 4,

fig. 5.1996. Sauvagesia sharpei - Caffau et al., pl. 96, pl. 5, Fig. 1,

pl 9, fig. 11997. Sauvagesia sharpei - Höfling, pl. 73, pl. 16, fig. 3.2002a. Sauvagesia sharpei - Chikhi-Aouimeur, pl. 121,

pl. 2, fig. f.2003. Sauvagesia sharpei - El-Sabbagh and El-Hedeny,

pl. 252, pl. 3, figs. 2–4.2006a. Sauvagesia sharpei - Chikhi-Aouimeur et al., pl. 203,

fig. 6.Material: three RV, 2 from Wadi El Siq and one from Wadi

El Bagha.Age and occurrence: Middle Turonian of western Sinai,

Egypt; also Turonian of Algeria and Iran (Toucas, 1909;Steiger, 1966). The species is well known in the Turonian of theMediterranean Provinces (Toucas, 1909; Carbone et al., 1980).It is also reported from Cenomanian-Turonian of Albania,Bosnia, Croatia, Italy, Slovenia, Yugoslavia, and Bulgaria(Steuber, 2002), and from the Cenomanian of Algeria (Chikhi-Aouimeur, 1998; Chikhi-Aouimeur et al., 2006a), France,Greece, Oman, and Portugal (Steuber, 2002).

Description: shell medium in size. RV cylinderoconical,outer shell layer thick. Ornament of RV consists of longitudinalribs. Radial bands broad, concave, pb wider than ab. Interband(I) raised bearing two or three prominent costae. Ligamentalridge (L) not preserved in the present material but ligamentalgroove (lg) is observed on the internal cast of the AV. Thegrowth laminae are observed within some broken specimens.

Remarks: the material identified by Choffat (1886: pl. 2,figs. 6–8, non figs. 1–5) as Sphaerulites sharpei seems to berelated to other radiolitid species because it has an elongateslim valve with different ornamental features, so it is notconsidered synonymous with the present species. Sauvagesianicaisei Coquand var. multicostata Sequenza (Pervinquiére,1912: pl. 315, pl. 21, figs. 13a, b) from the Cenomanian ofTunisia differs from the present species in having deeper radialbands and a narrow interband, crossed radially by two costae ofthe same strength like the ornament of the reminder shell.Sauvagesia herekeina Özer (1994: p. 5, pl. 1, fig. 5, 6) from the

Fig. 11. 1, 2, 8. Praeradiolites biskraensis (Coquand, 1880); 1: longitudinal fractutransverse fracture section of the outer layer of RV, showing the rectangular cellagariciformis Delamétherie (1805); 3: transverse fracture section of the outer layertransverse polished section. 5, 6, 7. Sphaerulites depressus Blanckenhorn (1934); 5:fracture section of growth laminae at the middle part of RV; 7: transverse fracture srectangular cell structure.

Maastrichtian of Turkey differs from the present species inhaving a conical lower valve and a flat interband.

Family HIPPURITIDAE Gray, 1848Genus Hippurites Lamarck, 1801Type species: Hippurites bioculata Lamarck, 1801.

Hippurites resectus Defrance, 1821Fig. 7(15–17)1821. Hippurites resecta - Defrance, pl. 195, pl. 21.1895. Hippurites resectus - Douvillé, pl. 168, pl. 26, figs. 1–

3.1910. Hippurites (Hippuritella) resectus - Douvillé, pl. 38,

66, pl. 2, fig. 6, text-figs. 39–41, 62–65.1913. Hippurites (Hippuritella) resectus - Douvillé, pl. 241,

text-fig. 1.1975. Hippurites (Hippuritella) resectus - Plenicar,

pp. 90,108, pl. 2, figs. 1, 2.1989. Hippurites resectus - Pascual et al., pl. 218, text-fig. 3.1993. Hippuritella resecta - Steuber, pl. 39, text-fig. 3c, d.2006a. Hippurites resectus - Chikhi-Aouimeur et al., pl. 23.2007. Hippurites resectus - Chikhi-Aouimeur, pl. 213,

fig. 2a.2007. Hippurites resectus - Oviedo et al., pl. 309.Material: three specimens of RV from the Wata Formation

of Wadi El Siq.Age and occurrence: Middle Turonian of western Sinai,

Egypt. Hippurites resectus is a cosmopolitan species originallydescribed from Uchaux, France. It is considered characteristicfor the late Turonian (Oviedo et al., 2007). The species isreported from middle to late Turonian of Tunisia, Algeria,Syria, Lebanon, France, Greece, Croatia, Italy, Turkey, Bosnia,Bulgaria, and Slovenia (Steuber, 2002; Özer et al., 2009). It isalso reported from the Coniacian of Spain and France (Pascualet al., 1989). Steuber (1999) mentioned the species is of middleto late Turonian in the Mediterranean region.

Description: shell medium in size, cylindrical with nearlyoval transverse section. RV (attached valve) larger than LV(free valve), which is operculiform and slightly convex. Threelengthwise external furrows corresponding to the radial pillars.Ligamental ridge (L) relatively long, triangular, inwardtapering and truncated at its end (Fig. 12). P1 is shorter andthicker than P2, which is angled towards the ligament andpinches at its base. The badly preserved LV is ornamented byradial costae with rounded pores.

Remarks: Hippuritella is generally known to be differentfrom Hippurites in having simple or denticulate pores in the FV(Dechaseaux et al., 1969). The nature of the ligamental ridgeand the posterior features support the affiliation of the presentmaterial to Hippurites rather than to Hippuritella. The presentmaterial is very similar to those described by Bandel andMustafa (1996: pl. 615, pl. 6, figs. 1–3; pl. 7, figs. 1–6) as

re section of the outer layer of RV, showing the elongate rectangular cells; 2:structure; 8, tangential section at the top part of the RV. 3, 4. Sphaerulites

of RV, showing the coarse rectangular, radially elongated cellular structure; 4:transverse fracture section, showing the rectangular cell structure, 6: tangentialection of growth laminae at the middle part of RV, showing the coarse regular

Page 18: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 12)TD$FIG]

1 cm

L

P1

P2

pm3'

1'

Fig. 12. Sketch drawing of a polished slab of a transverse section of Hippuritesresectus Defrance (1821). 1’ = anterior tooth socket; 3’ = posterior tooth socketin RV; pm = posterior myophore. Dark solid lines represent shell layering.

[(Fig._ 13)TD$FIG]

AB

C D

E

L

P1

P21 Cm

pm3'

1'

Fig. 13. Sketch drawing of a polished slab of the transverse section of a clusterof Vaccinites cf. grossouvrei (Douvillé, 1894). A. relatively complete individualwith preserved filled posterior tooth socket (3’) and anterior tooth socket (1’);posterior myophore (pm). B, C, D, deformed individuals; E, undulating innermargin of an outer shell layer.

M.S. Zakhera / Geobios 44 (2011) 409–433426

Hippurites requieni Matheron, 1842. Although H. requieni hasa shorter ligamental ridge and a longer P2, both species seemsto be related. Hippurites libanus Douvillé, 1910 (pl. 67, pl. IV,figs. 7, 8, text-fig. 66) differs from the studied species in havingcloser P1 and P2. The studied species differs from Hippuritescanaliculatus Rolland du Roquan, 1841 (Macé-Bordy, 2007c:p. 11, fig. 3A, B) from the Santonian of France in having adifferent transverse section outline, a larger ligamental ridge,and a shorter more inflated P2. The studied material ofH. resectus has a relatively longer, inward tapering ligamentalridge, which lies within the variability range of this species asfigured by Douvillé (1913). Tarlao (2005) reported Hippuritellaresectus Defrance from the Turonian of Italy, but this materialhas a short triangular ligamental ridge and P2 has a taperingbase and a tumid end. Özer and Sarı (2008) and Sarı and Özer(2009) identified Hippuritella resecta (Defrance) from Turkey.The Turkish material is generally comparable to the presentmaterial but they have a longer P2 with tapering base.

Genus Vaccinites Fischer, 1887.Type species: Hippurites cornuvaccinum Bronn, 1831.

Vaccinites cf. grossouvrei (Douvillé, 1894)Fig. 7(10–14)1894. Hippurites grossouvrei - Douvillé, pl. 118, pl. 18,

figs. 1–4.1904. Vaccinites grossouvrei - Toucas, pl. 97, pl. 14, figs. 1,

2, text-figs. 103, 152, 153.1910. Hippurites (Hippuritella) grossouvrei - Douvillé,

pl. 67, text-figs. 69, 70.1934. Hippurites grossouvrei - Blanckenhorn, pl. 232, pl. 12,

fig. 112.1956. Vaccinites praesulcatus - Rengarten, pl. 133, pl. 2,

figs. 4a, b, 5a, b, pl. 3, fig. 1a, b, text-figs. 5–7.1969. Vaccinites grossouvrei - Pamouktchiev, pl. 5, pl. 2,

Fig. 1, pl. 3, fig. 1.1984. Vaccinites grossouvrei - Bilotte, pl. 41, fig. 4.2001. Vaccinites grossouvrei - Sanders, pl. 165.Material: three RVand two associated valves from the Wata

Formation of Wadi El Siq and Wadi El Bagha.Age and occurrence: V. grossouvrei is mainly reported in

the late Turonian of Austria, Bulgaria, Greece, Lebanon,

Slovenia; in the middle-late Turonian of France and Bosnia;Turonian of Iran; early Turonian of Algeria; Cenomanian-lateTuronian of Syria, Palestine and Yugoslavia (Douvillé, 1910;Blanckenhorn, 1934; Pamouktchiev, 1969; Plenicar, 1973;Bilotte, 1984; Sanders, 2001; Steuber, 2002). This is the firstrecord of the species in Egypt. Steuber (1999) reported V. cf.grossouvrei (Douvillé, 1894), but with pillars of differentmorphology, from Boeotia, central Greece, and mentioned thatthis species is of middle to late Turonian in the Mediterraneanregion and of Turonian-Coniacian in Caucasus.

Description: RV large, cylinderoconical; three distinctpillars P1, P2, and L occupying an interval about one third ofshell circumference. Wall thickness about 0.3 cm. P1 (next tothe ligamental ridge) does not have pinced base but clearly openbase. P2 is thinner and twice as long as P1. Ligamental ridge (L)relatively long, tapers inwardly, generally truncated (Fig. 13).Inner margin of outer shell layer undulating. The outer surfaceof RV has longitudinal ribs separated by furrows. LV, whichrepresents the free valve is flat to slightly convex; poresreticulate or denticulate with two oscules.

Remarks: the species is very close to some varieties ofVaccinites grossouvrei (Douvillé, 1910: text-figs. 69, 70),which has a slightly open base of P1. Also the present materialhas a P2 with less narrow base. Vaccinites gosaviensis(Douvillé, 1890) from the Santonian-Campanian of Austriadiffers from the present species in having thicker shell wall,relatively narrower body cavity, the P2 pillar twice as long as P1both having pinced bases. The present species bears somesimilarity with Vaccinites marticensis (Douvillé, 1891) fromthe Coniacian of Spain (Troya and Vicens, 2008) but the latterspecies differs in the length of the L-P2 interval and the shape ofthe L and P2 pillars. Vaccinites rousseli (Douvillé, 1894), whichwas reported from France and Algeria (Chikhi-Aouimeur,2007), differs from the present species in the nature anddiameter of the radial area (less undulating) that occupies about

Page 19: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 427

one quarter of the valve circumference, and by the morphologyof the P2 pillar, which is relatively shorter with a tumid end.

4. Paleoecology of rudists in the western Sinai

Rudists are a peculiar group of bivalves with sessile shellsthat were adapted to filter feeding trophic regime. Many formsshow strong development of the attached valve and thesubsequent reduction of the free valve. In general form, rudistsresemble corals and it has been suggested that rudists replacedcorals in reefs during the Cretaceous (Kauffman and Sohl,1974; Johnson and Kauffman, 1996). In places rudist buildupscoresponded to a different environment than corals (Scott,1988). Scott (1990) and Gili et al. (1995b) showed that anenvironmentally induced vertical succession of corals to rudistsformed in response to changing depositional settings. It isbelieved that rudists lived in environments similar to thosepopulated by corals, usually warm, shallow and welloxygenated waters; however rudist-dominated assemblagescharacterised restricted (Scott, 1988) to hypersaline waters(Johnson and Kauffman, 1996). Some rudists may have beenable to suck in water through the perforated left valve(Clarkson, 1993).

4.1. Classification of rudist morphotypes in western Sinai

Skelton and Gili (1991) have suggested three ecologicalmorphotypes for rudist shells based on their life orientation:

� th

e elevators grew with a vertical to subvertical growthpattern, maintaining their commissure almost parallel to thesediment-water interface, with a small basal attachment area.They may have been largely buried within the sediment (Rossand Skelton, 1993). Kauffman and Sohl (1974) suggested thatmost elevators were only slightly buried within the sediment,as indicated by the distribution of epibiont and boringorganisms on their shells; � th e clingers were attached by a complete side of the attached

valve to hard substrates such as corals, hardgrounds and otherrudists, and they largely occur as single specimens. Thecommissure was at an angle of between 458 and 908 to thesediment-water interface;

� th e recumbents grew horizontally and lay free with the long

axis of both valves parallel to the sediment-water interface.They commonly grew in horseshoe-like shell forms.

The rudists of west central Sinai had adopted either elevatoror clinger morphotypes with the predominance of the first type;recumbent mode of life is rarely represented. In Wadi El Siqand Wadi El Bagha, the elevators are represented by Radioliteslusitanicus, Eoradiolites liratus, Praeradiolites biskraensis,Sphaerulites agariciformis, Sphaerulites depressus, Sauvage-sia sharpei (mainly as isolated elevators), Hippurites resectusand Vaccinites cf. grossouvrei, (as isolated and clusterelevator); the clinger morphotype is not reported in theselocalities. In Muabaa Salama, the elevators are represented byEoradiolites cf. davidsoni, Eoradiolites liratus, Eoradiolites

syriacus, Eoradiolites lenisexternus nov. sp., and Praeradio-lites ponsianus (as cluster elevators), while Requienia tortuosinov. sp., Toucasia carinata and Apricardia carentonenis areclingers. Apricardia carentonenis could also achieve recum-bent mode as the two valves of some specimens grew, havingsmooth base and the commissure at an angle of 908 to thesediment-water interface.

Some individuals of Vaccinites cf. grossouvrei andHippurites resectus (Wata Formation of Wadi El Siq and WadiEl Bagha), Praeradiolites ponsianus (Wata Formation ofMusabaa Salama), Eoradiolites lenisexternus nov. sp. (lowerpart of the Abu Qada Formation of the Abu Qada Formation,Musabaa Salama) are reported in their life position, achievingthe autochthonous fabric of Johnson et al. (2001). Other speciesshow not in situ parautochthonous fabrics of lacking binding.Most species in the studied sections of west central Sinai showopen fabrics in which the matrix supported shells with lowpacking. Closed fabrics are achieved by Eoradiolites liratusand Eoradiolites syriacus as they show relatively densepacking. The elevator hippuritid rudists of the circum-Mediterranean have been interpreted as constratal growthforms (Gili et al., 1995a; Skelton et al., 1995; Sanders and Pons,1999).

4.2. Paleoecological indication of Cenomanian andTuronian rudists in western Sinai

The three levels of the lower part of the Raha Formation atWadi El Siq and Wadi El Bagha (Fig. 2) are characterized bythe predominance of elevator morphotypes. The presence ofthe elevator morphotypes in this late Cenomanian sequenceindicates calm environments (the elevator morphotype islinked with low energy environments; Korbar et al., 2002).The rudist beds have a matrix of lime mudstone alsosuggesting a low-energy environment. Many rudists arerandomly oriented; this suggests high-energy episodes. Thisinterval northwestward at Musabaa Salama is occupied byoyster banks of Ilymatogyra africana (Lamarck) andCeratostron flabellatum (Goldfuss), indicating that thesituation at Musabaa Salama was more active as it is barrenof any rudists. Upwardly in Wadi El Siq and Wadi El Bagha,rudists appeared in the late Turonian part of the Abu QadaFormation represented by elevators belonging to Vaccinites,Hippurites and Sauvagesia in dolomitic marl facies. Theseelevators grew longer with less tumid shells that may indicatea higher sedimentation rate in deeper conditions than those oflate Cenomanian. Radiolites occupied the shallowest subtidalenvironments while in the deepest areas (outer shelfenvironment) various species of Vaccinites thrived, often asscattered individuals (Moro et al., 2002).

In Musabaa Salama (Fig. 3) rudists appeared in the lower,Cenomanian part of Abu Qada Formation with elevator, clingerand few recumbent forms. The recumbent forms appeared at thehigher level of this interval, together with the othermorphotypes. Recumbent rudists grew during intervals ofreduced or no sedimentation (Mitchell, 2002). Also thecylinderoconical forms of Eoradiolites lenisexternus nov. sp.

Page 20: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

[(Fig._ 14)TD$FIG]

Fig. 14. Randomly oriented elevator Praeradiolites ponsianus (D’Archiac,1835) from the Wata Fm., showing toppled nearly horizontal (A), oblique(B) and nearly vertical (C) individuals.

M.S. Zakhera / Geobios 44 (2011) 409–433428

cemented together in bouquet association; the conical forms areshorter with some curvature. This growth form may reflect alower sedimentation rate according to Metwally and Abd ElAzeam (1997).

In the early Turonian sequence of Wata Formation, rudistsare represented by elevator Praeradiolites in dolomiticlimestone facies. Elevators were feeding in calm waters abovethe sediment surface and out of the zone of muddy water. Noneof the reported rudists show sign of encrustation, but borings areobserved in some species. The any mode of occurrence revealedthat they lost their upright living position (Fig. 14) due toepisodic current action during life or post-mortem basinprocesses, which may have moved them slightly from theirliving position. Toppling of rudists indicates low sedimentationrates and reworking by storms (Mitchell, 2002).

Presence of Requienia biostromes that lived as clingersindicates a low sedimentation rate during deposition of thelower part of the Abu Qada Formation in Musabaa Salama area.The clingers lived in environments with variable waterturbulence but could not cope with high sedimentation rates(Steuber and Löser, 2000). Requieniidae species from the lowerCretaceous of the Mediterranean Tethys inhabited shallowwater carbonate platforms (Masse and Philip, 1981; Masse,1992). In United Arab Emirates the requieniid and monopleuridrudists predominate in the shelf lagoon and display a patchydistribution vertically and laterally in Aptian sediments(Hamdan and Alsharhan, 1991). The requieniids have beenpreserved in a muddy, quiet-water, inner-platform environment(Swinburne and Masse, 1995).

Based on the inferred mode of life and taphonomic features,the Cenomanian rudist assemblage of Requienia in MusabaaSalama section is described as ‘‘Primary shell concentrations’’of Type A of Ruberti and Toscano (2002) as they are of densepacking with a minor clastic silty matrix, slightly oblique to thebedding plane, weakly bioeroded, mostly intact and articulated.Upward in the same section within Wata Formation, theelevator Praeradiolites represents a ‘‘Primary shell concentra-tions’’ of Type B of Ruberti and Toscano (2002) as they areobliquely oriented to toppled, bioeroded and disarticulated. TheCenomanian Rudist assemblage of the Raha Formation and theTuronian assemblage of Abu Qada in Wadi El Siq and Wadi ElBagha are also ‘‘Primary shell concentrations’’ of Type B.

Species of Apricardia, Requienia, Toucasia, Eoradiolites,Sphaerulites, Praeradiolites, Sauvagesia, and Radiolitesadopted an epifaunal life habit, and those of Hippurites andVaccinites adopted a semi-infaunal life habit and all were ofsuspension feeding habit (Paleobiology database, 2008).

In Wadi El Siq and Wadi El Bagha, the upper part of theRaha Formation and the lower part of the Abu Qada Formation,in the interval below and above the Cenomanian/Turonianboundary, are devoid of any rudists. In Musabaa Salama sectionthe lower part of the Raha Formation and only interval abovethe C/T boundary is also devoid of rudists. The absence ofrudists may be attributed to the marine transgression duringlatest Cenomanian, which led to sea-level rise and deeperconditions. Absence of rudist above the C/T boundary may berelated to drowning of the Cenomanian platform. The globaltemperature was significantly warmer than today (Kaiho andSaito, 1994). This warmness may have led to drowning of theplatform (Steuber and Löser, 2000). Crises in species richnessand abundance during early and middle Cretaceous can beattributed to regional environmental perturbation, induced byeither oceanic anoxia or tectonic movements (Steuber andLöser, 2000). Rudists are absent from the relatively deeperwater of lower Turonian deposits of the Adriatic carbonateplatform. Those that thrived later in the Turonian and Senonianon the Adriatic carbonate platform were sediment-dwellingelevators (Gili et al., 1995a). The paleocommunity was changedover the Cenomanian-Turonian transition in the west centralSinai. This is indicated by drop in faunal diversity, change offaunal characteristics of oysters and ammonites (Zakhera andKassab, 2002) and absence of rudist. It seems that the shelfduring the late Cenomanian-early Turonian was too shallowand the rudist paleocommunities may have been subjected tohigher salinities due to decreased continental runoff or lowoxygen, causing an ecological stress to the fauna. The anoxicwater may have been moved up towards shorelines during thesea level rise and drowning of the shelf. The biotic changeswere closely linked with global shifts in oceanographic currentsystems, water mass chemistry, and nutrient levels (Scott,1995).

The number of individuals per rudist species in the WesternDesert (Abu Roash area) of Egypt, especially in the Turonianrocks, is higher than other populations of the same age intervalin central Sinai. The rich occurrence of rudist species in AbuRoash may be related to the presence of paleohighs due totectonic activities. These paleohighs generated shallow settingsexcept of the sea transgression over the southern Tethyanmargin. These shallowing conditions favored certain types ofshallow marine reefal communities in Turonian (Hamza, 1993).

5. Paleobiogeography

The type and rate of ambient sedimentation is of particularimportance for the development of rudists due to their sessile,suspension-feeding habit (Steuber and Löser, 2000). Rudiststhrived in a wide range of shallow marine settings (Ross andSkelton, 1993). The studied Cenomanian and Turonian rudistsof western Sinai are of Tethyan affinities, especially Eastern

Page 21: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 429

Mediterranean, southern Europe and Middle East, comparablewith those of North Africa.

During the late Cenomanian, the requieniid rudists ofwestern Sinai reflect strong relations with western African andEastern Mediterranean platforms. At the generic level,Requienia is known from Balkan area in lower Aptian (Masseet al., 2004). Toucasia carinata is well known since Barremianto Albian from areas of northern south part of the EasternMediterranean subprovince. It seems that it migrated south-westwards to Spain and north Africa (Algeria, Tunisia andEgypt) during Aptian and Cenomanian. The Radioliteslusitanicus and Sphaerulites agariciformis link the westernSinai with western African, southern Europe, eastern Medi-terranean and western Balkan areas. Eoradiolites liratus iswidely distributed in Egypt, western Africa (Morocco, Algeria)and eastern Africa (Somalia), reflecting a strong connectionwith western Africa and North Indian Ocean subprovinces.Praeradiolites biskraensis is known in western Sinai, westernAfrica and eastern Mediterranean. Sphaerulites depressus andEoradiolites syriacus seem to be restricted to the Mediterraneanregion as they are reported from late Cenomanian of westernSinai, and eastern Mediterranean areas (Syria, Lebanon andPalestine). Eoradiolites sp. cf. davidsoni is reported in the lateCenomanian of western Sinai, while Eoradiolites davidsoni is awell-known species from middle Albian rocks of the Caribbeanarea (Mexico and Texas).

During the Turonian, Sauvagesia sharpei, Hippuritesresectus, Vaccinites cf. grossouvrei and Praeradiolites ponsia-nus are reported in western Sinai. At the same time they are wellknown species in western Africa, southern Europe, easternMediterranean and western Balkan.

With the current state of knowledge, we therefore concludethat during late Cenomanian, the Mediterranean area of NorthAfrica was connected with the rest of the Tethys, with a fewendemic species so far restricted to the two new species of thisstudy. During Turonian, the Mediterranean area was limitedlyexchanging faunas with the Caribbean Province. The variationsin rudist distribution and diversity are controlled by thegeodynamic evolution of the Mediterranean plates (Philip,1985). The faunal differences are attributed to facies diversityand isolation degree, while similarities between areas are alsoevident due to geodynamic situation and tectonic evolution(Pons and Sirna, 1992).

6. Conclusions

Paleontologic work in this study led to identification offifteen rudist species, including two new ones: Requieniatortuosi and Eoradiolites lenisexternus. This is the first recordof the genus Requienia in Egypt. Also, some species arereported for the first time in Egypt, including Apricardiacarentonenis d’Orbigny, Eoradiolites syriacus (Conrad),Sphaerulites agariciformis Delamétherie, Sphaerulites depres-sus Blanckenhorn, and Vaccinites cf. grossouvrei (Douvillé).Rudist abundance generally declines from Cenomanian toTuronian in central Sinai. The clastics flux in central Sinai mayhave affected the rudist diversity. The rudist assemblages are

dominated by elevator morphotypes lying obliquely or parallelto the bedding planes in imbricated or random orientations,reflecting the effect of currents or limited storms.

The disappearance of rudists is the middle part of the sequenceis due to deeper settings linked with a sea level rise. The absenceof rudists above the Cenomanian/Turonian boundary may berelated to drowning of the Cenomanian platform. The distribu-tion of the rudists with oysters and other benthic fossils in thesiliciclastic and carbonate sediments of the Upper Cretaceous(Cenomanian and Turonian) sedimentary rocks in the centralSinai indicates that the sequence was deposited on a broad,shallow shelf. The paleocommunity was modified due to highersalinities or low oxygen. The predominance of elevatormorphotypes and presence of some clinger and few recumbentmorphotypes in the late Cenomanian sequence indicate that theenvironment was of low energy with low sedimentation rates butinterrupted by high-energy episodes evidenced by the randomorientation and toppling of elevators. In Turonian, the onlyelevators grew longer with less tumid shells, wich may indicatehigher sedimentation rate in deeper conditions than that of lateCenomanian. The environment ranged from shallow subtidal inCenomanian to outer shelf in Turonian. Although corals andrudist bivalves coexisted in the shallow carbonate platforms ofmany parts of the Tethyan Realm during most of the Cretaceous,no obvious corals are associated with the recorded rudists inwestern Sinai. The presence of rudists without corals reflectsspecific paleoecological conditions and supports the conclusionthat the Cenomanian-Turonian sequence of western Sinai wasdeposited on a shallow shelf. The rudist species of west centralSinai are strongly related to those of North African, easternMediterranean (especially Middle East) and southern Europecountries.

Acknowledgements

I deeply thank the late Prof. A. Kassab (Assiut University)for assistance during the field work; Prof. R.W. Scott (TheUniversity of Tulsa, USA), Prof. T. Steuber (BochumUniversity, Germany), Prof. J.M. Pons (Autonoma Universita,Barcelona, Spain), and Prof. S. Götz (Heidelberg University,Germany) for sending their articles concerning rudists fromdifferent localities in the world; Prof. R.W. Scott andProf. J.M. Pons for reading the manuscript and for suggestionswhich improved this paper. Deep appreciation to Prof. S. Özer(Dokuz Eylül University, Turkey) and an anonymous refereefor reviewing the manuscript and for valuable suggestions.

References

Abdel Gawad, G.I., El Sheik, H.A., Abdel Hamid, M.A., El Beshtawy, M.K.,Abed, M.M., Fürsich, F.T., El Qot, G.M., 2004a. Stratigraphic studies onsome Upper Cretaceous successions in Sinai, Egypt. Egyptian Journal ofPaleontology 4, 263–303.

Abdel Gawad, G.I., Orabi, O.H., Ayoub, W.S., 2004b. Macrofauna and bio-stratigraphy of the Cretaceous section of Gebel El-Fallig area, northwestSinai, Egypt. Egyptian Journal of Paleontology 4, 305–333.

Abdel Gawad, G.I., Saber, S.G., El Shazly, S.H., Feleih, Y., 2008. Turonianrudists from Abu-Roash area, North Western Desert, Egypt. The 8th

Page 22: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433430

International Congress on Rudists, Dokuz Eylül University, Izmir, Turkey,23–25 June, Abstracts book, pp. 45.

Accordi, G., Carbone, F., Sirna, G., Catalano, G., Reali, S., 1988. Sedimentaryevents and rudist assemblages of Maiella Mt, (central Italy). Paleobiogeo-graphic implications. Geologica Romana 26, 135–147.

Accordi, G., Carbone, F., Sirna, G., 1989. Some affinities between the IonianIslands and the Apulian Upper Cretaceous rudist facies. In: Battista Carulli,G. (Ed.), Evolution of the Karstic Carbonate Platform: Relation with otherPeriadriatic Carbonate Platforms 40. Memorie della Società geologicaItaliana, Roma, pp. 163–173.

Adkins, W.S., 1930. New rudistids from the Texas and Mexican Cretaceous.University of Kansas Bulletin, Contribution to Geology 3001, 77–100.

Alencáster, G., García-Barrera, P., 2008. Albian Radiolitid rudists (MolluscaBivalvia) from East-Central Mexico. Geobios 41, 571–587.

Aly, M.F., Saber, Sh.G., Abdel Gawad, G.I., Felih, Y., 2005. Cenomanian-Turonian rudist buildups of North Sinai, Egypt. Egypt Journal of Paleon-tology 5, 253–286.

Bandel, K., Mustafa, H., 1996. Constructional morphology of some upperCretaceous rudist of the Ajman (Jordan). Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg 77, 603–635.

Bartov, J., Eyal, Y., Garfunkel, Z., Steinitz, G., 1972. Late Cretaceous andTertiary stratigraphy and paleogeography of southern Israel. Israel Journalof Earth Sciences 21, 69–97.

Bartov, J., Lewy, Z., Steinitz, G., 1980. Mesozoic and Tertiary stratigraphy,paleogeography and structural history of the Gebel Areif en Naqa Area,eastern Sinai. Israel Journal of Earth Sciences 29, 114–139.

Bauer, J., Steuber, Th., Kuss, J., Heimhofer, U., 2004. Distribution of shallow-water benthics (rudists, calcareous algae, benthic foraminifers) in theCenomanian-Turonian carbonate platform sequence of Sinai, Egypt. Cou-rier Forschungsinstitut Senckenberg 247, 207–231.

Bayle, E., 1857. Nouvelles observations sur quelques espèces de rudistes.Bulletin de la Société géologique de France 2 (14), 647–719.

Berizzi Quarto di Palo, A., 1971. Étude paléontologique. In: Berizzi Quarto diPalo, A., Busson, G. (Eds.), Lamellibranches apto-cénomaniens del’extrême-sud tunisien 77. Rivista Italiana di Paleontologia e Stratigrafia,Milano, pp. 437–544.

Berthou, P.Y., 1973. Le Cénomanien de l’Estrémadure portugaise. Servicosgeológicos de Portugal, Memòria (NS) 23, 169.

Berthou, P.Y., 1983. Les limites et subdivisions des étages Albien à Turoniendans le bassin occidental Portugais avec un intérêt spécial pour la limiteCénomanien-Turonien dans les deux faciès à ammonites. In: Birkelund, T.,Bromley, R., Kegel, W., et al. (Eds.), Symposium on Cretaceous stageboundaries, Copenhagen, Abstracts, pp. 21–24.

Bilotte, M., 1984. Le Crétacé supérieur des plates-formes est-pyrénéennes.Atlas Strata 2, 1–45.

Blainville, H., 1825. Manuel de malacologie et de conchyliologie. ÉditionsLevrault, Paris.

Blanckenhorn, M., 1890. Beiträge zur Geologie Syriens. Die Entwicklung desKreidesystems in Mittel-und Nord-Syrien, Kassel.

Blanckenhorn, M., 1934. Die Bivalven der Kreideformation von Syrien-Palaes-tina. Palaeontographica (A) 81, 161–302.

Bronn, H.G., 1831. Hippurites. In: Ersch, J.S., Gruber, J.G. (Eds.), AllgemeineEncyklopaedie der Wissenschaften und Künste 2, section 8. Brockhaus,Leipzig, pp. 371–376.

Caffau, M., Plenicar, M., 1991. Rudistid fauna from Turonian deposits of thelocality ‘‘Archi’’/Moscenice in the surroundings of Duino (Karst of Triest).Slovenska Akademija Znanosti in Umetnosti, Razred za naravoslovne Vede.Razprave 32, 259–315.

Caffau, M., Plenicar, M., 1995. Santonian-Campanian rudist fauna from thearea of Basovizza/Bazovica (northeastern Trieste Karst): systematic andpaleoecological aspects. Slovenska Akademija Znanosti in Umetnosti,Razred za naravoslovne Vede. Razprave 36, 223–275.

Caffau, M., Pugliese, N., Plenicar, M., 1996. The development of the molluscfauna in the Cenomanian of the stratigraphic sequence of Visogliano (Karstof Triest, Italy). Geologija 37/38, 87–121 (for 1994/1995).

Carbone, F., Russo, A., Sirna, G., 1980. Comunità a coralli e rudiste delCretacico superiore di Rocca di Cave (Monti Prenestini, Lazio). Annalidell’Università di Ferrara NS 9, supplement.

Cestari, R., Sartorio, D., 1995. Rudists and Facies of the Periadriatic Domain.AGIP, San Donato Milano.

Chikhi-Aouimeur, F., 1998. Sauvagesiinae du Cénomanien supérieur de larégion de Berrouaguia (Sud d’Alger, Algérie). In: Masse, J.P., Skelton,P.W. (Eds.), Quatrième Congrès international sur les Rudistes. Geobios MS22, pp. 101–109.

Chikhi-Aouimeur, F., 2002a. Distribution biostratigraphique des rudistes enAlgérie : état des connaissances, perspectives d’étude. Mémoire du ServiceGéologique d’Algérie 11, 115–131.

Chikhi-Aouimeur, F., 2002b. Étude de quelques radiolitides du Crétacésupérieur d’Algérie orientale. Proceedings of the First International Con-ference on Rudists (Beograd, 1988, Rudits). UGSY Memoir 61–79.

Chikhi-Aouimeur, F., 2007. Late Cretaceous Hippuritids of Algeria: A criticalreview of bibliographic data. In: Scott, R.W. (Ed.), Cretaceous Rudists andCarbonate Platforms: Environmental Feedback. SEPM Special Publication87, pp. 213–220.

Chikhi-Aouimeur, F., Abdallah, H., Pons, J.M., Vicens, E., 2006a. The Cen-omanian-Turonian rudists of the Gafsa region, Tunisia. The InternationalCongress on Bivalvia, July, 22–27 July, 2006, Barcelona. Abstracts book.

Chikhi-Aouimeur, F., Mefnoune, B.N., Bankih, K., 2006b. Cenomanian andTuronian Rudists from Ghardaia (Mzab, Algeria). Palaeontology, Biostra-tigraphy and Palaeobiogeography. Mémoires du Service Géologique Na-tional Alger 13, 199–207.

Chikhi-Aouimeur, F., Pons, J.M., Vicens, E., Abdallah, H., 2008. Late Creta-ceous rudists of the Gafsa region, Tunisia. The 8th International Congresson Rudists, Dokuz Eylül University, Izmir, Turkey, 23–25 June, 2008,Abstracts book.

Choffat, P., 1886. Recueil d’études paléontologiques sur la faune crétacique duPortugal. Espèces nouvelles ou peu connues. Comunicaçoes dos Serviçosgeologicos de Portugal 1–40.

Choffat, P., 1902. Recueil d’études paléontologiques sur la faune crétacique duPortugal. 4ème série. Espèces diverses. Comunicaçoes dos Serviços geolo-gicos de Portugal 1–171.

Clarkson, E.N.K., 1993. Invertebrate Paleontology and Evolution, third ed.Chapman & Hall, London.

Conrad, T.A., 1852. Description of the fossils of Syria, collected in the Palestineexpedition. In: Lynch, W.F. (Ed.), Official Report of the United StatesExpedition to Explore the Dead Sea and the River Jordan. Baltimore,Maryland.

Coquand, H., 1880. Études supplémentaires sur la paléontologie algérienne.Bulletin de l’Académie d’Hippone, Bône 15, 1–449.

Czabalay, L., 1994. Korrelation der Molluskenfaunen des Urgons von Ungarn(Villány- und Mecsek-Gebirge) und Österreich (Vorarlberg). In: Lobitzer,H., Császár, G., Daurer, A. (Eds.), Jubiläumsschrift 20 Jahre geologischeZusammenarbeit Österreich-Ungarn, Wien, pp. 209–224.

D’Archiac, E.J.A., 1835. Mémoire sur la formation crétacée du S-O de la France7. Mémoire de la Société géologique de France 157–192.

d’Orbigny, A., 1842. Quelques considérations zoologiques et géologiques surles rudistes. Annales des Sciences naturelles 17 (2), 173–192.

d’Orbigny, A., 1850. Prodrome de paléontologie stratigraphique universelle desanimaux mollusques et rayonnées 2. Masson, Paris.

Dacqué, E., 1903. Mittheilungen über den Kreidecomplex von Abu Roash beiKairo. Palaeontographica 30, 337–391.

De Castro, P., Sirna, G., 1996. The Durania araudi biostrome of El-Hassana.Abu Roash area (Egypt). Geologia Romana 32, 69–91.

De Lapeirouse, P., 1781. Description de plusieurs nouvelles espèces d’Ortho-ceratites et d’Ostracites. W. Walter, Erlangen.

Dechaseaux, C., Coogan, A.H., Cox, L.R., Perkins, B.F., 1969. Mollusca 6(Bivalvia). In: Moore, R.C. (Ed.), Treatise on invertebrate paleontology,part N, vol. 2. Geological Society of America, University of Kansas,Lawrence, Kansas, pp. N776–N817.

Defrance, J.L.M., 1821. Hippurites. In: Defrance, J.L.M. (Ed.), Dictionnairedes sciences naturelles 21. Levrault, Paris, pp. 195–197.

Delamétherie, J.C., 1805. De la Sphérulite. Journal de Physique 61, 396–409.Des Moulins, C., 1826. Essai sur les Sphaerulites qui existent dans les

collections de F. Jouanet et Ch. des Moulins et considérations sur la familleà laquelle ces fossiles appartiennent. Bulletin d’Histoire naturelle de laSociété linnéenne de Bordeaux 1827 1, 87–155.

Page 23: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 431

Douvillé, H., 1887. Sur quelques formes peu connues de la famille deschamidés. Bulletin de la Société géologique de France (3) 15, 756–802.

Douvillé, H., 1890. Sur l’Hippurites gosaviensis. Bulletin de la Sociétégéologique de France (3) 19.

Douvillé, H., 1891. Études sur les rudistes. Révision des principales espècesd’Hippurites. Mémoires de la Société géologique de France, Paléontologie 61, 1–31.

Douvillé, H., 1894. Études sur les rudistes. Révision des principales espècesd’Hippurites (quatrième partie). Mémoires de la Société géologique deFrance, Paléontologie 6 4, 95–138.

Douvillé, H., 1895. Études sur les rudistes. Distribution régionale des Hippurites.Mémoires de la Société géologique de France, Paléontologie 6 5, 139–186.

Douvillé, H., 1902. Classification des Radiolites. Bulletin de la Société géolo-gique de France 2 (4), 461–482.

Douvillé, H., 1904. Sur quelques rudistes à canaux. Bulletin de la Sociétégéologique de France 4 (4), 519–538.

Douvillé, H., 1909. Sur le genre Eoradiolites nov. gen. Compte Rendusommaire des Séances de la Société géologique de France 9 (5), 35.

Douvillé, H., 1910. Études sur les rudistes. Rudistes de Sicile, d’Algérie,d’Égypte, du Liban et de la Perse. Mémoires de la Société géologiquede France 41, 83.

Douvillé, H., 1913. Description des rudistes de l’Égypte. Mémoires présentés àl’Institut égyptien Al Qahirah 6, 237–256.

Douvillé, H., 1914. Les requiénidés et leur évolution. Bulletin de la Sociétégéologique de France 14 (4), 383–389.

Douvillé, H., 1915. Sur quelques rudistes d’Égypte. Bulletin de l’Institutégyptien Al Qahirah 5 (8), 162–167.

Douvillé, H., 1926. Quelques fossiles du Crétacé supérieur de Cuba. Compterendu sommaire et Bulletin de la Société géologique de France 4 (26),127–138.

El-Hedeny, M.M., 2007. New taxonomic and biostratigraphic data on the?Upper Cenomanian-Turonian Radiolitidae (Bivalvia: Hippuritoidea) ofAbu Roash, Western Desert, Egypt. Neues Jahrbuch für Geologie undPaläontologie – Abhandlungen 244 (1), 79–98.

El-Hedeny, M.M., El-Sabbagh, A.M., 2005. Eoradiolites liratus (Bivalvia,Radiolitidae) from the Upper Cenomanian Galala Formation at Saint Paul,Eastern Desert (Egypt). Cretaceous Research 26, 551–655.

El-Sabbagh, A.M., El-Hedeny, M.M., 2003. Upper Turonian Radiolitidae(Rudist bivalve) from the Actaeoella Series, El-Hassana Dome, Abu Roash,Egypt. Egyptian Journal of Paleontology 3, 243–269.

Fischer, P., 1887. Manuel de conchyliologie et de paléontologie conchyliolo-gique ou Histoire naturelle des Mollusques vivants et fossiles. F. Savary,Paris, 1049–1369.

Fourtau, R., 1900. Sur le Crétacé du Massif d’Abou Roah (Égypte). ComptesRendus de l’Académie des Sciences de Paris 131 (16), 629–631.

Fourtau, R., 1903. Sur le Turonien d’Abou Roah (Égypte). Comptes Rendus del’Académie des Sciences de Paris 137 (15), 584–596.

Franchis de, F., 1903. Mollusci della creta media del Leccese. Bollettino dellaSocietà geologica italiana 22, 147–165.

Frass, O., 1867. Aus dem Orient - Geologische Beobachtungen am Nil, auf derSinai-Halbinsel und in Syrien. Edner und Seubert, Stuttgart.

Gili, E., Masse, J.P., Skelton, P.W., 1995a. Rudists as gregarious sediment-dwellers, not reef builders, on Cretaceous carbonate platforms. Palaeogeo-graphy Palaeoclimatology Palaeoecology 119, 245–267.

Gili, E., Skelton, P.W., Vicens, E., Obrador, A., 1995b. Corals to rudists - anenvironmentally induced assemblage succession. Palaeogeography Palaeo-climatology Palaeoecology 119, 127–136.

Goldfuss, A., 1837. Petrafacta Germaniae, pt. 2, life 6, 141–224. Arnz andCompany, Düsseldorf.

Goldfuss, A., 1840. Bemerkungen über den Bau der Rudisten. Neues Jahrbuchfür Mineralogie, Geognosie. Geologie und Petrefaktenkunde 1840, 59–68.

Gray, E., 1848. On the arrangement of the Brachiopoda. Annals and Magazineof Natural History 2 (2), 435–440.

Guéranger, E., 1853. Un répertoire paléontologique du département de laSarthe. Julien Lanier et Cie, Le Mans.

Hamdan, A.R.A., Alsharhan, A.S., 1991. Palaeoenvironments and palaeoecol-ogy of the rudists in the Shuaiba Formation (Aptian) United Arab Emirates.Journal of African Earth Science 12, 569–581.

Hamza, F.H., 1993. Upper Cretaceous rudist-coral buildups associated withtectonic doming in the Abu Roash area, Egypt. Neue Jahrburg für Geologieund Paläontologie, Monatshefte 2, 75–87.

Hill, R.T., 1893. The Paleontology of the Cretaceous Formations of Texas:Paleontology of the Caprina Limestone. Proceedings of the BiologicalSociety of Washington 8, 87–108.

Höfling, R., 1997. Eine erweiterte Riff-Typologie und ihre Anwendung aufkretazische Biokonstruktionen. Bayerische Akademie der Wissenschaften,Mathematisch-Naturwissenschaftliche Klasse. Abhandlungen (NF) 169, 1–

127.Johnson, C.C., Kauffman, E.K., 1996. Maastrichtian extinction patterns of

Caribbean Province rudists. In: MacLeod, N., Keller, G. (Eds.), Cretac-eous-Tertiary mass extinctions: biotic and environmental changes, Chapter9, 23. Norton and Company, New York-London, pp. 1–272.

Johnson, C.C., Sanders, D., Kauffman, E.G., Hay, W.W., 2001. Patterns andprocesses influencing Upper Cretaceous reefs. In: Kiessling, W., Flügel, E.,Golonka, J. (Eds.), Phanerozoic Reef Pattern. SEPM Special publication 72,pp. 49–585.

Kaiho, K., Saito, S., 1994. Ocean crust production and climate during the last100 Myr. Terra Nova 6, 376–384.

Kauffman, E.G., Sohl, N.F., 1974. Structure and evolution of Antillean Creta-ceous rudist frameworks. Verhandlungen Naturforschende GesellschaftBasel 84, 399–467.

Kerdany, M.T., Cherif, O.H., 1990. Mesozoic. In: Siad, R. (Ed.), The Geologyof Egypt. Balkema, Rotterdam, Brookfield.

Klinghardt, F., 1929. Die stammesgeschichtliche Bedeutung, innere Organisa-tion und Lebensweise von Eoradiolites liratus Conrad sp. Palaeontogra-phica 72, 95–101.

Kora, M., Hamama, H., 1987. Biostratigraphy of the Cenomanian-Turoniansuccession of Gabal Gunna, southeastern Sinai. Mansoura Science Bulletin14, 289–301.

Korbar, T., Skelton, P.W., Tisljar, J., Moro, A., Vlahoviæ, I., Veliæ, I., Fuèek, L.,2002. Middle to Upper Cenomanian transition in southern Istria (Gomila,Tasalera and Fenoliga Islet). Sixth International Congress on Rudists.Rovinj- Abstracts and Excursion Guidebook. Institut za geoloska Istrai-vanja.

Kuss, J., 1989. Facies and paleogeographic importance of the pre-rift limestonefrom NE-Egypt and Sinai. Geologische Rundschau 78, 487–498.

Kuss, J., 1992. The Aptian-Paleocene Shelf Carbonates of Northeast Egypt andSouthern Jordan: Establishment and Break-up of Carbonate Platforms alongthe Southern Tethyan Shores. Schweizerbart’sche Verlagsbuchhandlung.Science Publishers 143, 107–132.

Lamarck, J.B., 1801. Système des animaux sans vertèbres, ou Tableau généraldes classes, des ordres et des genres de ces animaux 1. Deterville, Paris.

Lamarck, J.B., 1819. Histoire naturelle des animaux sans vertèbres, 6. Chezl’Auteur, au Jardin du Roi, Paris, 230–236.

Laviano, A., Sirna, G., Facchini, G., 1998. Rudist facies distribution in thecentral southern Apennines and Apulia (Italy). In: Masse, J.P., Skelton,P.W. (Eds.), Quatrième Congrès international sur les Rudistes. Geobios MS22, pp. 169–180.

Lupu, D., 1992. Le faciès à rudistes du Cénomanien de Hateg (Carpatesméridionales, Roumanie). Geologica Romana 28, 351–358.

Macé-Bordy, J., 2007a. Révision des rudistes crétacés (Bivalvia) de la Paléon-tologie française d’Alcide d’Orbigny. Annales de paléontologie 93, 149–

178.Macé-Bordy, J., 2007b. Révision des rudistes crétacés (Bivalvia) de la Paléon-

tologie française d’Alcide d’Orbigny. Annales de paléontologie 93, 67–105.Macé-Bordy, J., 2007c. Révision des rudistes crétacés (Bivalvia) de la Paléon-

tologie française d’Alcide d’Orbigny. Annales de paléontologie 93, 1–26.Mainelli, M., 1995. Apricardia manuelae n. sp. in the lower Turonian of

northeastern Matese (South Apennines), Italy. Revista Mexicana de Cien-cias Geologicas 12, 195–200.

Masse, J.P., 1992. The Lower Cretaceous mesogean benthic ecosystems:palaeoecologic aspects and palaeobiogeographic implications. Palaeogeo-graphy Palaeoclimatology Palaeoecology 91, 331–345.

Masse, J.P., Philip, J., 1981. Cretaceous coral-rudist buildups of France. In:Toomey, D.F. (Ed.), European fossil reef models. Society of EconomicPaleontologists and Mineralogists, Special Publication 30, pp. 399–426.

Page 24: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433432

Masse, J.P., Borgomano, J., Al-Maskiry, S., 1997. Stratigraphic and tectono-sedimentary evolution of a late Aptian-Albian carbonate margin: thenortheastern Jebel Akhdar (Sultanate of Oman). Sedimentary Geology113, 269–280.

Masse, J.P., Arias, C., Vilas, L., 1998. Lower Cretaceous rudist faunas ofsoutheast Spa. An overview. In: Masse, J.P., Skelton, P.W. (Eds.),Quatrième Congrès international sur les Rudistes. Geobios MS 22,pp. 193–210.

Masse, J.P., Özer, S., Fenerci, M., 2004. Upper Barremian-Lower Aptian RudistFaunas from the western Black Sea Region (Turkey). Courier Forschung-sinstitut Senckenberg 247, 75–88.

Masse, J.P., Fenerci-Masse, M., Vilas, L., Arias, C., 2007. Late Aptian-Albianprimitive Radiolitidae (bivalves, hippuritoidea) from Spain and SW France.Cretaceous Research 28, 697–718.

Matheron, P., 1842. Différences qui existent entre les Hippurites et les Radi-olites. Bulletin de la Société géologique de France 13, 520–521.

Matheron, P., 1843. Catalogue méthodique et descriptif des corps organisésfossiles du Département des Bouches-du-Rhône et lieux circonvoisins,Marseille.

Mekkawy, M.S., 2007. Upper Cretaceous bivalves from Galala Plateaux, northEastern Desert, Egypt: a systematic paleontology. Egyptian Journal ofPaleontology 7, 197–243.

Metwally, M.H.M., Abd El Azeam, S., 1997. Paleoecological analysis andenvironmental development of the Upper Cretaceous, southern Galala, Gulfof Suez, Egypt. Neues Jahrbuch für Geologie und Paläontologie, Abhan-dlungen 203, 273–293.

Mitchell, S.F., 1999. Rudist bivalves - a bizarre group of fossils from theCretaceous of Jamaica. Hull Geological Society. Humberside Geologist 12,http://www.hullgeolsoc.org.uk/rudist.htm.

Mitchell, S.F., 2002. Palaeoecology of corals and rudists in mixed volcani-clastic-carbonate small-scale rhythms (Upper Cretaceous, Jamaica). Palaeo-geography Palaeoclimatology Palaeoecology 186, 237–259.

Moro, A., Skelton, P.W., Cosovic, V., 2002. Palaeoenvironmental setting ofrudists in the Upper Cretaceous (Turonian-Maastrichtian) Adriatic Carbon-ate Platform (Croatia), based on sequence stratigraphy. Cretaceous Re-search 23, 489–508.

Munier-Chalmas, H., 1873. Prodrôme d’une classification des rudistes. Journalde Conchyliologie 3, 71–75.

Nazemi, F., Grubic, A., 1959. Note préliminaire sur le Crétacé à rudistes del’Anti-Alborz (Elbourz) occidental (E et SE de Téhéran, Iran). Compterendu sommaire et Bulletin de la Société géologique de France (7) 1,944–953.

Oviedo, A., Pons, J.M., Pichardo-Barrón, Y., Aguilar-Pérez, J., Alencáster, G.,2007. Stratigraphical Distribution of the Hippuritid Rudists in the UpperCretaceous of Central Mexico. In: Díaz-Martínez, E., Rábano, I. (Eds.), 4thEuropean Meeting on the Palaeontology and Stratigraphy of Latin America.Cuadernos del Museo Geominero, 8. Instituto Geológico y Minero deEspaña, Madrid.

Özer, S., 1994. New Species of Radiolitidae from the Bolu Area (W. Black-Sea)and Kocaeli Peninsula. Bulletin of the Mineral Research and Exploration116, 1–8.

Özer, S., Sarı, B., 2008. Rudist-bearing marbles of the metamorphic MenderesMassif and the Upper Cretaceous limestones of the Bey Daglari carbonateplatform (Western Turkey), Eighth International Congress on Rudists.Cretaceous Rudists and Carbonate Platform. Izmir-Turkey, Post-MeetingField Trip (2), Excursion Guide, June 23–25, 2008.

Özer, S., Meric, E., Görmüsù, M., Kanbur, S., 2009. Biogeographic distributionof rudists and benthic foraminifera: an approach to Campanian-Maastrich-tian palaeobiogeography of Turkey. Geobios 42, 623–638.

Paleobiology database, 2008. http://paleodb.org.Pamouktchiev, A., 1969. La faune des rudistes du village Lyalintzi, Bulgarie de

l’Ouest. Annuaire de l’Université de Sofia, Faculté de Géologie et Géogra-phie, Livre 1. Géologie 61, 1–14.

Paquier, V., 1903. Les rudistes urgoniens. Première partie. Mémoires de laSociété géologique de France, Paléontologie 29 11, 1–46.

Paris, A., Sirna, M., 1996. Geology and paleontology of the south-westerncarbonate edge of Fucino Plain (Abruzzi, central Apennines). GeologicaRomana 32, 183–209.

Parnes, A., 1987. Radiation of species of the genus Radiolites from the UpperTuronian at Gebel Er-Risha (NE Sinai, Egypt). Israel Journal of EarthSciences 36, 133–153.

Parona, C.F., 1901. Le rudiste et le camacee di S. Polo Matese raccolte daFrancesco Bassani. Memorie dell’Accademia delle Scienze di Torino,Classe di Scienze Fisiche. Matematiche e Naturali 50, 196–214.

Parona, C.F., 1921. Fauna del neocretacio della Tripolitania. Memorie perserviré alla descrizione della Carta geologica d’Italia. Roma 8, 1–21.

Parona, C.F., 1926. Richerche sulle rudiste e su altri fossili del Cretacicosuperiore del Carso Goriziano e dell’Istria. Memorie del Istituto Geologico,Padova 7, 1–56.

Parona, C.F., 1935. Di alcune rudiste dello Zardeh Kuh in Persia. Atti dellaAccademia delle Scienze fisiche, matematiche e naturali 70, 123–137.

Pascual, O., Pons, J.M., Vicens, E., 1989. Rudist horizons in the Montsec (southcentral Pyrenees). In: Wiedmann, J. (Ed.), Cretaceous of the western Tethys.Proceedings of the 3rd international Cretaceous Symposium, Tübingen1987. Schweizerbart, Stuttgart.

Peron, A., 1889. 1889–1893. Description des invertébrés fossiles des terrainscrétacés de la région sud des hauts-plateaux de la Tunisie recueillis en 1885et 1886 par M. Philippe Thomas. Imprimerie Nationale, Paris.

Pervinquiére, L., 1912. Paléontologie tunisienne. II- Gastéropodes et Lamelli-branches des terrains crétacés. Ordre des Pachyodontes. Éditions Lamarreand cie, Paris, 297–338.

Peza, L.H., Pirdeni, A., 1994. Cenomanian-Turonian boundary in the MirditaZone, Albania. Cretaceous Research 15, 217–225.

Philip, J., 1985. Sur les relations des marges téthysiennes au Campanien et auMaastrichtien détritus de la distribution des Rudistes. Bulletin de la Sociétégéologique de France S8 (1), 723–731.

Philip, J., Mermighis, A., Tronchetti, G., 1989. Nouvelles données stratigra-phiques et paléogéographiques sur le Crétacé supérieur du domaine hellé-nique interne. Le massif de l’Akros (Argolide, Grèce). Comptes rendus del’Académie des Sciences de Paris (2) 308, 1379–1384.

Pictet, F.J., Campiche, G., 1867–1870. Description des fossiles du terraincrétacé des environs de Sainte-Croix. Matériaux pour la paléontologiesuisse 5 (9), 1–352 (Genève).

Plenicar, M., 1973. Radiolites from the Cretaceous beds of Slovenia, part I.Geologija 16, 187–217.

Plenicar, M., 1975. Hippuritidae of Nanos and the Trieste-Komen plain.Slovenska Akademija Znanosti in Umetnosti, Razred za prirodoslovneVede. Razprave 18/4 85–115.

Polsak, A., 1967. Macrofaune crétacée de l’Istrie méridionale (Yougoslavie).Palaeontologica Jugoslavica 8, 1–219.

Polsak, A., Mamuzic, P., 1969. Les nouveaux gisements de rudistes dansle Crétacé supérieur des Dinarides externes. Geoloski Vjesnik 22,229–245.

Pons, J.M., Sirna, G., 1992. Upper Cretaceous rudists distribution in theMediterranean Tethys: comparison between platforms from Spain and southcentral Italy. Geologica Romana 28, 341–349.

Pons, J.M., Vicens, E., 2008. The structure of the outer shell layer in radiolitidrudists: a morphoconstructional approach. Lethaia 41, 219–234.

Pons, J.M., Schroeder, J.H., Höfling, R., Moussavian, E., 1992. UpperCretaceous rudist assemblages in northern Somalia. Geologica Romana28, 219–241.

Pons, J.M., Reali, S., Sartorio, D., 1995. A new species of the genus HippuritellaDouvillé, 1908 from the Maastrichtian of south Yemen and northernSomalia. Revista Mexicana de Ciencies Geologicas 12, 267–271.

Razgallah, S., Philip, J., Thomel, G., Zaghbib-Turki, D., Chaabani, F., 1994. Lalimite Cénomanien-Turonien en Tunisie centrale et méridionale : biostrati-graphie et paléoenvironnements. Cretaceous Research 15, 507–533.

Rengarten, V.P., 1956. About several Cretaceous rudists from Cakarpatskaya.Trudy Instituta geologicheskij Nauk Akademija Nauk SSSR 164, 120–143.

Ride, W.D.L., Sabrosky, C.W., Bernardi, G., Melville, R.V. (Eds.), 1985.International code of zoological nomenclature. third ed. International Trustzoological Nomenclature, London.

Ross, D.J., Skelton, P.W., 1993. Rudist formations of the Cretaceous: apalaeoecological, sedimentological and stratigraphical review. In:Wright, V.P. (Ed.), Sedimentology Review 1. Blackwells Science,Oxford, pp. 73–91.

Page 25: Cenomanian-Turonian rudists from Western Sinai, Egypt: Systematic paleontology and paleoecology

M.S. Zakhera / Geobios 44 (2011) 409–433 433

Ruberti, D., Toscano, F., 2002. Microtratigraphy and taphonomy of rudist shellconcentrations in Upper Cretaceous limestone, Cliento area (central-south-ern Italy). In: Monegatti, P., Cecca, F., Raffi, S. (Eds.), InternationalConference Paleobiogeography and Paleoecology 2001, Piacenza andCastell’Arquato 2001. Geobios MS 24, pp. 228–240.

Saber, S.G., Salama, Y.F., Scott, R.W., Abdel-Gawad, G.I., Aly, M.F., 2009.Cenomanian-Turonian rudist assemblages and sequence stratigraphy on theNorth Sinai carbonate shelf, Egypt. GeoArabia 14, 113–134.

Said, R., 1962. The Geology of Egypt. Elsevier Pub. Co, Amsterdam.Sanders, D., 2001. A fan delta succession rich in water escape structures (Upper

Turonian, Brandenberg, Austria): possible record of paleoseismicity. Facies44, 163–182.

Sanders, D., Pons, J.M., 1999. Rudist formations in mixed siliciclastic-carbon-ate depositional environments, Upper Cretaceous, Austria: stratigraphy,sedimentology, and models of development. Palaeogeography Palaeocli-matology Palaeoecology 148, 249–284.

Sarı, B., Özer, S., 2009. Upper Cretaceous rudist biostratigraphy of the BeyDagları Carbonate Platform, Western Taurides; SW Turkey. Geobios 42,359–380.

Schöllhorn, E., 1998. Geologie und Paläontologie des Oberapt im Becken vonOrganyà. Coral Research Bulletin 6, 1–139.

Scott, R.W., 1988. Evolution of Late Jurassic and Early Cretaceous reef biotas.Palaios 3, 184–193.

Scott, R.W., 1990. Models and stratigraphy of Mid-Cretaceous reef communi-ties, Gulf of Mexico (concepts in sedimentology and paleontology). SEPMSociety of Sedimentary Geology, Special Publication, Tulsa 1–102.

Scott, R.W., 1995. Global environmental controls on Cretaceous reefal eco-systems. Palaeogeography Palaeoclimatology Palaeoecology 119, 187–199.

Skelton, P.W., 1978. The evolution of functional design in rudists (Hippuritacea)and its taxonomic implications. Philosophical Transactions of the RoyalSociety of London (B) 284, 305–318.

Skelton, P.W., Gili, E., 1991. Palaeoecological classification of rudist morpho-types. Proceedings of the 1st International Conference on Rudists (Beograd,1988, Rudists). Serbian Geological Society, Special Publication 2, 265–287.

Skelton, P.W., Masse, J.P., 2000. Synoptic guide to Lower Cretaceous rudistbivalves of Arabia. In: Alsharhan, A.S., Scott, R.W. (Eds.), Middle Eastmodels of Jurassic/Cretaceous carbonate systems. SEPM Special Publica-tion 69, Tulsa, Oklahoma, pp. 89–99.

Skelton, P.W., Gili, E., Vicens, E., Obrador, A., 1995. The growth fabric ofgregarious rudist elevators (hippuritids) in a Santonian carbonate platformin the southern Central Pyrenees. Palaeogeography PalaeoclimatologyPalaeoecology 119, 127–136.

Steiger, R., 1966. Die Geologie der West-Firuzkuh-Area (Zentralelburz/Iran).Mitteilungen aus dem Geologischen Institut der Eidgenössischen Tech-nischen Hochschule und der Universität Zürich 68, 1–145.

Steuber, T., 1993. Late Cretaceous paleogeography and hippuritid biostratigra-phy of Beotia (Greece). Geological Society of Greece, Bulletin. Proceed-ings of the 6th Congress of the Geological Society of Greece 28/3 39–53.

Steuber, T., 1999. Cretaceous rudists of Boeotia, central Greece. Special Papersin Palaeontology 61, 1–229.

Steuber, T., 2002. A palaeontological database of Rudist Bivalves (Mollusca,Hippuritoidea, Gray; 1848, Web Catalogue of the Hippuritoidea, rudistbivalves). Institut für Geologie, Mineralogie and Geophysik, Rhür-Universitat Bochum, Bochum, Allemagne, http://www.paleotax.de/rudists/literat.htm.

Steuber, T., Bachmann, M., 2002. Late Aptian-Albian rudist bivalves fromnorthern Sinai, Egypt. Palaeontology 45, 725–749.

Steuber, T., Löser, H., 2000. Species richness and abundance pattern of TethyanCretaceous rudist bivalves (Mollusca: Hippuritacea) in the central-easternMediterranean and Middle East, analyzed from a palaeontological database.Palaeogeography Palaeoclimatology Palaeoecology 162, 75–104.

Steuber, T., Kuss, J., Bauer, J., 1999. Succession of rudists in Sinai (Egypt). In:Höfling, R., Steuber, T. (Eds.), Fifth International Congress on Rudists,Abstracts and field trip guides. Erlanger Geologische Abhandlungen 3,pp. 71–72.

Swinburne, N.H.M., Masse, J.P., 1995. Early Cretaceous Rudist Fauna ofAllison and Resolution Guyots, Mid-Pacific Mountains. In: Winterer,E.L., Sager, W.W., Firth, J.V., Sinton, J.M. (Eds.), Proceedings of the OceanDrilling Program, Scientific Results 143, College Station TX, pp. 3–14

Tarlao, A., 2005. Rudistid bivalves from Late Cretaceous of Periadriatic areas(NE Italy and W Croatia). The Seventh International Congress on Rudists,The University of Texas, Austin, USA, 5–11 June, Abstracts and post-congress field guide, by Tarlao and Tunis, G., and Additional descriptions byTarlao on CD.

Torre, D., 1965. Rudiste presenoniane delle Murge Baresi. PalaeontographiaItalica 59, 63–83 (NS, 29).

Toucas, A., 1904. Études sur la classification et l’évolution des Hippurites,deuxième partie. Mémoires de la Société géologique de France, Paléonto-logie 30 12, 65–128.

Toucas, A., 1907. Études sur la classification et l’évolution des radiolitidés :Agria and Praeradiolites. Mémoires de la Société géologique de France,Paléontologie 36 14, 1–46.

Toucas, A., 1908. Études sur la classification et l’évolution des radiolitidés :Sphaerulites and Radiolites. Mémoires de la Société géologique de France,Paléontologie 36 16, 47–78.

Toucas, A., 1909. Études sur la classification et l’évolution des radiolitidés :Sauvagesia and Biradiolites. Mémoires de la Société géologique de France,Paléontologie 36 17, 79–132.

Troya, L., Vicens, E., 2008. Coniacian rudists in the northern margin of TrimpBasin, south-central Pyrenees, Spain. The 8th International Congress onRudists. Izmir, Turkey, Poster board and Abstracts book.

Yanin, B.T., 1988. Rudists. In: Ali-Zade, A.A. (Ed.), Cretaceous fauna ofAzerbaidzhan. ELM, Baku, pp. 18–19.

Yanin, B.T., 1989. The Jurassic and Cretaceous rudists: stratigraphical andgeographical distribution. Nauka, Moskva.

Zakhera, M. S., 2001. Cenomanian-Turonian Mollusks (Bivalves, Gastropodsand Ammonites) from Gebel Musabaa Salama, West Central Sinai, Egypt.The 2nd International Conference on the Geology of Africa, Vol. 2, 445–

466, Assiut University, Egypt.Zakhera, M.S., 2005. Paleoecology of Upper Cretaceous Rudist Bivalves from

Egypt. The Seventh International Congress on Rudists, The University ofTexas, Austin, USA, 5–11 June, 2005, Abstracts and post-congress fieldguide.

Zakhera, M.S., 2008. Distribution and abundance of rudist bivalves in theCretaceous carbonate platform sequences in Egypt: Time and space. The 8thInternational Congress on Rudists, Dokuz Eylül University, Izmir, Turkey,23–25 June, 2008, Abstracts book, p. 18.

Zakhera, M.S., Kassab, A.S., 2002. Integrated macrobiostratigraphy of theCenomanian-Turonian transition in Wadi El-Siq, west central Sinai, Egypt.Egyptian Journal of Paleontology 2, 219–233.