14
Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

Embed Size (px)

Citation preview

Page 1: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

CoursÉlectricité – Électronique

MIP_BMr Mohammed TSOULI

Page 2: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

Chap I : Charge électriqueet Loi de Coulomb

I) Charges électriques• On place a l’extrémité d’un pendule une bille en verre

qu’on a électrisée à l’aide d’un chiffon. On l’approche ensuite d’un bâton en verre électrisé (par frottement).

• La bille en verre s’écarte, il y a répulsion. Si nous recommençons l’expérience avec une bille et

un bâton en plexiglas, on observe le même phénomène.

Bâton et billeEn verre ou en plexiglas

Bille en verreBâton en plexiglas

Répulsion Attraction

Page 3: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

On va prendre maintenant une bille en verre et un bâton en plexiglas.La bille est attirée par le bâton : il y a attractionConclusionces expériences montrent qu’il y a deux types de charges électriques : charges positives et négatives.lorsqu’on met en présence deux charges de même nature elles se repoussent et lorsqu’on met en présence deux charges de nature différente elles s’attirent.

Unité de chargeL’unité naturelle de charge d’une particule élémentaire :Électron –e = - 1,6021.10**-19 C me = 0,91.10**-30 KgProton +e = 1,6021.10**-19 C mp = 1,67.10**-27 Kg

Page 4: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

r

r

r

qqF

r

r

r

qqF

A

A

20

'

20

'

4

1

'

4

1

AAr '

'AAr

A A’

q q’

rAF

'AF

II) La loi de Coulomb • Considérons dans le vide deux charges électriques

ponctuelles q et q’ ; au repos dans un repère R, placées respectivement en des points A et A’ distants de r.

• Pour un observateur lie a R, l’interaction électrostatique entre ces deux charges se manifeste par une force FA appliquée à q et une force FA’ appliquée à q’ telles que :

Le vecteur r est dirigé vers le point ou se trouve la charge soumise à la force considérée.

εo permittivité du vide : 19

0

10.94

1

Page 5: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

Chap II : Champ électrostatique

OMr r

r

r

qE

2

04

1

i

i

i

in

i

n

ii r

r

r

qEE

21 01 4

1

MOr ii

Au point M le vecteur champ électrostatique s’obtient par une somme géométrique.

b) Cas de plusieurs charges ponctuelles.

I) Le vecteur champ électrostatiquea) Cas d’une charge ponctuelle

dans un repère R, en tout point M situé à la distance r d’une charge q ponctuelle immobile, placée en O, il existe un vecteur champ électrostatique E tel que :

Page 6: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

c) Relation avec la loi de Coulomb

Si l’on place en M une charge q’, elle est soumise à une force :

r

r

r

qqEqF

2

0

'

4

1''

O M

q q’

r 'F

Page 7: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

II) Champ électrostatique du à des distributions continues de charges

a) Distribution volumique de charges

supposons que les charges soient en très grand nombre et se distribuent d’une manière continue dans un volume V. autour d’un point P de la distribution, dans un élément de volume dV, se trouve la charge dq = ρ dV

ρ densité volumique de charge au point P.

b) Distribution surfacique de charges

supposons que les charges soient en très grand nombre et se distribuent d’une manière continue dans une surface S. autour d’un point P de la distribution, dans un élément de surface dS, se trouve la charge dq = σ dS

σ densité surfacique de charge au point P.

Page 8: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

c) Distribution linéique de chargessupposons que les charges soient en très grand nombre et se distribuent d’une manière continue sur une courbe C. autour d’un point P de la distribution, dans un élément de longueur dl, se trouve la charge dq = λ dlλ densité linéique de charge au point P.

Page 9: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

Autour du point P de la distribution, chaque charge élémentaire dq, peut être considérée comme une charge ponctuelle, créant en un point M de l’espace un champ électrostatique élémentaire :

r

r

r

dqEd

2

0

1

4

III) Calcul du vecteur champ électrostatique

Le champ électrostatique total crée par la distribution au point M est :

rr

dVEdE

VV

304

1

PM

Page 10: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

rr

dSEdE

SS

3

04

1

rr

dlEdE

CC

3

04

1

Remarque : dans le cas d’une distribution surfacique et linéique le champ total est respectivement :

V

dEE 11 V

dEE 22 V

dEE 33

Cas particulier : dans certains cas, en tenant compte de la symétrie de la distribution, on peut déterminer le sens et la direction du vecteur champ E ; son module s’obtient alors par une intégrale unique.

Cas général : le calcul champ E se ramène à celui de trois intégrales relatives à chacune des composantes :

Page 11: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

q

Lignes de champ

Surface de niveau(sphère centrée sur q)

une ligne de champ est une courbe telle qu’en chacun de ses points elle soit tangente au vecteur du champ définit en ce point.

IV) Surface de niveau et ligne de champ

Tous les points qui correspondent à une même intensité de champ sont situés sur une surface que l’on appelle surface de niveau.

Page 12: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

CHAP III Théorème de Gauss

I) Flux du vecteur champ électrostatique à travers une surface.1) Orientation d’une surface.

– Si la surface est fermée, la normale à cette surface est toujours orientée vers l’extérieur.

– Si la surface ouverte (S) s’appuie sur un contour fermé ©, l’orientation de la normale à la surface est liée au sens de parcours sur le contour ©; elle est donnée par la règle du tire-bouchon.

Surface fermée Surface ouverte

n est le vecteur unitaire de la normale en un point de la surface (S)

Page 13: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

2) Définition du flux du champ électrostatique à travers une surfacesoit une surface quelconque (S) orientée, le vecteur champ électrostatique E(M) est défini en chaque point M de cette surface (S).le flux élémentaire du champ électrostatique E(M) à travers un élément de surface est par définition :

cos.... dSEdSnEd

le flux du champ électrostatique E à travers la surface (S) fermée est :

)()(

..SS

dSnEd

),( nE

avec

Page 14: Cours Électricité – Électronique MIP_B Mr Mohammed TSOULI

II) Application du théorème de GaussÉnoncé : le flux du vecteur champ électrostatique, crée par une distribution de charges à travers une surface fermée (S), est égale au produit par 1/ε0 de la somme algébrique des charges situées à l’intérieur de (S) à laquelle on ajoute la demi somme des charges superficielles.

erfQQdSnE sup0

int0 2

11..

cas où on dispose d’une distribution volumique de charge répartie à l’intérieur de la surface fermée et d’une distribution surfacique de charge répartie sur la surface fermée

dSdVSV

00 2

11