14
This article was downloaded by: [University of Cambridge] On: 05 December 2014, At: 03:41 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Canadian Journal of Science, Mathematics and Technology Education Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ucjs20 Environmental Education and STEM Education: New Times, New Alliances?/ Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux et alliances nouvelles? Connie Russell a & Justin Dillon b a Lakehead University , Ontario, Canada b King's College London , London, United Kingdom Published online: 19 Feb 2010. To cite this article: Connie Russell & Justin Dillon (2010) Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux et alliances nouvelles?, Canadian Journal of Science, Mathematics and Technology Education, 10:1, 1-12, DOI: 10.1080/14926150903574213 To link to this article: http://dx.doi.org/10.1080/14926150903574213 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

  • Upload
    justin

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

This article was downloaded by: [University of Cambridge]On: 05 December 2014, At: 03:41Publisher: RoutledgeInforma Ltd Registered in England and Wales Registered Number: 1072954 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Canadian Journal of Science,Mathematics and Technology EducationPublication details, including instructions for authors andsubscription information:http://www.tandfonline.com/loi/ucjs20

Environmental Education and STEMEducation: New Times, New Alliances?/Formation environnementale etformation en sciences, technologies,ingénierie et mathématiques: tempsnouveaux et alliances nouvelles?Connie Russell a & Justin Dillon ba Lakehead University , Ontario, Canadab King's College London , London, United KingdomPublished online: 19 Feb 2010.

To cite this article: Connie Russell & Justin Dillon (2010) Environmental Education and STEMEducation: New Times, New Alliances?/Formation environnementale et formation en sciences,technologies, ingénierie et mathématiques: temps nouveaux et alliances nouvelles?, Canadian Journalof Science, Mathematics and Technology Education, 10:1, 1-12, DOI: 10.1080/14926150903574213

To link to this article: http://dx.doi.org/10.1080/14926150903574213

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the“Content”) contained in the publications on our platform. However, Taylor & Francis,our agents, and our licensors make no representations or warranties whatsoever as tothe accuracy, completeness, or suitability for any purpose of the Content. Any opinionsand views expressed in this publication are the opinions and views of the authors,and are not the views of or endorsed by Taylor & Francis. The accuracy of the Contentshould not be relied upon and should be independently verified with primary sourcesof information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever orhowsoever caused arising directly or indirectly in connection with, in relation to or arisingout of the use of the Content.

This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Page 2: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 3: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

CANADIAN JOURNAL OF SCIENCE, MATHEMATICSAND TECHNOLOGY EDUCATION, 10(1), 1–12, 2010Copyright C© OISEISSN: 1492-6156 print / 1942-4051 onlineDOI: 10.1080/14926150903574213

Environmental Education and STEM Education:New Times, New Alliances?

At the beginning of the 20th century, the major threat to human life was disease—the averagelife expectancy in the UK was 45. At the beginning of the 21st century, the average life expectancyis 75, an astonishing change in 100 years that is primarily due to advances in science, medicine,and technology. However, with increased life expectancy comes a greater population and that,coupled with a demand for better quality of life, has resulted in a major environmental crisis.Although science and technology will provide some solutions, without an educated populationprepared to change the way that they live and work, the prospects for the future of the planet lookgrim.

This editorial1 was written at the midpoint of the United Nations Climate Change Conferenceon Climate Change in Copenhagen (COP15). By the time this special issue of the CanadianJournal of Science, Technology and Mathematics Education is published, it should be clearwhether the summit was a tipping point or just another step in the right (or wrong) direction.

Living, as the two of us do, on opposite sides of the Atlantic, in developed countries with ashared history but very different political situations (though the difference might be much smallerafter the UK elections in 2010), the global nature of many environmental issues is all too clear.What is also clear is that while the summit is an intensely political affair, with all that it entails,issues of science and education are never far from the surface.

Only weeks before the summit, approximately 160 MB of data, seemingly sourced from theUniversity of East Anglia’s Climate Research Unit, appeared across the Internet. E-mails anddocuments, supposedly from many of the top scientists involved in climate change research, werealleged to provide a “smoking gun” showing collusion to deny the truth to the public and policymakers. The rise in climate change denial leading up to the summit and the excitement shown insome quarters at the thought of malfeasance on the part of researchers poses serious questionsabout the nature of evidence, the nature of science, and the role of education in promoting publicunderstanding and engagement.

The political response in the UK was remarkably hard-hitting. Prime Minister Gordon Browndeclared to the Guardian newspaper that, “With only days to go before Copenhagen we mustn’tbe distracted by the behind-the-times, anti-science, flat-earth climate skeptics.”2 He continued,“We know the science. We know what we must do. We must now act and close the 5bn-tonnegap. That will seal the deal.”

UK environment secretary, Ed Miliband, complained that, “The approach of the climatesaboteurs is to misuse data and mislead people. The skeptics are playing politics with science ina dangerous and deceitful manner. There is no easy way out of tackling climate change despitewhat they would have us believe. The evidence is clear and the time we have to act is short. Toabandon this process now would lead to misery and catastrophe for millions.”3

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 4: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

2 EDITORIAL

Alas, the approach of the Canadian government has been quite different from that seen recentlyin the UK. Many Canadians were terribly embarrassed by a November 2009 Guardian article byGeorge Monbiot that ran with the headline, “Canada’s image lies in tatters. It is now to climate whatJapan is to whaling.” Monbiot labeled Canada “a corrupt petro-state” and the “nation that has donethe most to sabotage a new climate change agreement.”4 This state of affairs is not surprising giventhe ideological bent of the Harper government and its “anti-science” stance. Indeed, Nature pub-lished an article last year decrying the government’s decision to close the office of the national sci-ence advisor, muzzle Environment Canada scientists, and limit investments in scientific research.5

So, at this sad moment of opportunity, what can we learn about education and the environment,science, technology, and mathematics? Are environmental issues and key ideas in and approachesto science, technology, and mathematics widely misunderstood by the public? Have educationalsystems in our home countries let us all down? Are our curricula deeply out of date and irrelevant?Do teachers know enough about the issues? Does environmental education make a difference?Can it ever?

Current models of science education have failed to deliver an adequately educated populationwilling and able to take appropriate action at an individual or a societal level. Data from theRelevance of Science Education (ROSE) study indicate that in many countries, science in schoolsis not as popular as other subjects in the curriculum (Sjøberg & Schreiner, 2005). Science,technology, engineering, and mathematics (STEM) education does not present an accurate viewof how science works; most children do not identify with being a scientist or an engineer, and, bythe time children are 14, their minds about their career choice may be made up. The evidence pointsto a conclusion that STEM education needs to change to reflect students’ needs and to producenot just the required numbers of scientists and engineers but also a scientifically literate society.

So, we need a different STEM education. Where does environmental education fit in? Is itmerely a subset of STEM education? What role does or could the science-technology-society-environment (STSE) approach have? How often does environmental education and technologyeducation comingle? Why are connections between mathematics education and environmentaleducation so rarely made?

One of us (JD) has written that, “environmental education offers a conceptual richness thatchallenges current thinking in science education because of its multi-disciplinary origins andtraditions” (Dillon & Scott, 2002, p. 1112). The Australian environmental education researcherAnnette Gough is also quite clear about a way forward: “Science education needs EE to reassertitself in the curriculum by making science seem appropriate to a wider range of students andmaking it more culturally and socially relevant” (Gough, 2002, p. 1210). Arguing for mutuality,Gough suggests that, “EE needs science education to underpin the achievement of its objectivesand to provide it with a legitimate space in the curriculum to meet its goals because they are veryunlikely to be achieved from the margins” (p. 1210). In terms of what science and environmentaleducation might offer, it has been argued that:

. . . we should focus on helping learners deal with the sheer complexity and splendour of the environ-ment as well as looking to use the local environment as a vehicle for developing understanding of themore mundane aspects of the science curriculum. (Dillon & Scott, 2002, p. 1112)

We see a need to “shift from seeing ‘environment’ as a focus for the consideration of scienceconcepts to seeing a STEM education as one which, properly, seeks to help students understandenvironmental issues in the context of their lives, and their lives in the context of environmental

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 5: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

EDITORIAL 3

issues” (Dillon & Scott, 2002, p. 1112). The argument was, and still is, that “our identities areonly artificially separated from our environment” (p. 1112). Without an adequate STEM andenvironmental education, tomorrow’s citizens will be unable to appreciate their relationship withthe environment and, as a result, might not make choices that will lead to a sustainable future.

In this special issue the focus is on a range of issues covering more than climate changeand going well beyond Canada and the UK. Moving from an analysis of South African curric-ula; to collaborative inquiry into an online environmental education course in a U.S. university;to the exploration of Swiss children’s ideas about science, technology, and the environment;to an investigation of the experiences of environmental educators from Ontario, Canada,each of these papers also engages in the sort of critical questioning we are advocatingabove.

Lesley Le Grange begins his paper with a short history of environmental education in SouthAfrican schools, noting government attempts to depoliticize it during the apartheid era. Post-apartheid, there has been a serious attempt to infuse environmental education across the SouthAfrican curriculum. Le Grange offers a careful analysis of current curriculum documents andnotes both positive developments (e.g., in the natural science curricula) and areas of concern(e.g., in the mathematics assessment standards, there is frequent mention of the environment butit feels more like an “add-on” than a sincere attempt to meld mathematics and environmentaleducation). In general, Le Grange finds that the understanding of “environment” in South Africancurricula remains anthropocentric and emphasizes biophysical over social, political, and eco-nomic dimensions. He identifies other challenges for environmental education as well, includinga curriculum framework that is outcomes based and insufficient teacher preparation and support.Taking inspiration from radical curriculum theory, however, Le Grange concludes on an encour-aging note, with a call to move away from the current languages of critique and possibility inenvironmental education to a language of probability that demands engagement with a variety ofpartners, including schools, universities, and non-governmental organizations (NGOs).

Christine Moseley, Rosalie Herber, Jennifer Brooks, and Lista Schwartz describe their expe-riences as instructors and participants in a university distance education course in environmentaleducation. They probe the apparent paradox of learning about environmental education in a vir-tual environment. Drawing on research literatures in both distance education and environmentaleducation, they discuss the tensions between the two. Much environmental education privilegesfirsthand experience in natural areas so the thought of teaching in a virtual environment is anath-ema to many. Yet there are also calls for environmental education to reach a wider audienceand the use of online learning may ease accessibility. To date, there is little research in eitherdistance education or environmental education on the impacts of using virtual environments onstudent learning. Moseley and her fellow authors begin to address this gap through their ownsmall collaborative inquiry. Using the North American Association for Environmental Educa-tion (NAAEE) Guidelines for the Preparation and Professional Development of EnvironmentalEducators (Simmons, 2004) as a rubric, they concluded that their particular online course didpromote three of the four tenets touted in the Guidelines. While the opportunity for firsthandexperiences of the natural environment was notably absent, the students were adults pursuinghigher education who had previous experiences on which to draw. As readers, this makes the twoof us wonder about the role of online learning with younger students. In the midst of a polarized“environment versus technology” debate, we see not only theoretical and practical gaps but alsoa research gap waiting to be filled.

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 6: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

4 EDITORIAL

Albert Zeyer and Stefanie Kagi conducted research with 408 Swiss children aged 11–13 years.Using drawings and an adapted version of questions used in the ROSE study mentioned above,they wanted to assess the stance the students were taking on the role of science and technologyin environmental contexts. In a previous study with Swiss students aged 15–16 years, Zeyer andKagi concluded that students showed tendencies toward materialism and hedonism and took anapproach that could be best characterized as a form of scientism; that is, the idea that science neednot be questioned and deserved epistemic privilege. The results of their research with youngerchildren surprised the authors somewhat; unlike their older counterparts, these students couldbe seen to be adopting an idealistic ecocentric stance that portrayed science and technologyas instruments of environmental degradation. Zeyer and Kagi speculate on the implications oftheir research for science and technology education. As readers, the two of us wonder whatmight be going on for Swiss children between the ages of 13 and 15. What role, if any, mightscience, technology, and environmental education be playing in the shift from ecocentrism toscientism?

Michael Tan and Erminia Pedretti offer us a glimpse into the current state of Ontario environ-mental education as experienced by teachers. At first glance, this is an exciting time given thatthe Ontario Ministry of Education (2007) commissioned a report that advocated the importanceof environmental education (and then publicly committed to implementing all 32 recommenda-tions) and last year produced a policy framework for environmental education (Ontario Ministryof Education, 2009). Tan and Pedretti, however, paint a somewhat bleaker picture. Mirroringpast research on the state of Canadian environmental education (e.g., Hart, 1990; Russell, Bell,& Fawcett, 2000), the teachers surveyed here raised concerns about things like an overcrowdedcurriculum and the resultant lack of time for environmental education, lack of resources, and thelow priority given to environmental education in schools. Tan and Pedretti point out, however,that it is sometimes too easy to blame such external factors for the failures of environmentaleducation; they thus also advocate looking at deeper issues such as the nature of schooling (e.g.,as a force of social reproduction) and the ways in which all of us are embedded in (a generallyanti-environmental) wider society.

Reflecting on the issue as a whole, we hearken back to when we circulated the Call for Papersfor this special issue; we were not sure what might come our way. We had high hopes thatwe would have papers that investigated the connections, the disjunctures, the pitfalls, and thepossibilities created through mash-ups of environmental education and science, mathematics, andtechnology education. The papers we received suggest that such conversations are much furtheralong in science education, bubbling up in technology education, and pretty quiet in mathematicseducation. And a more integrated approach where all four areas are brought together seems toremain in the realm of theory more than in practice. As suggested above, then, we must continueto ask ourselves questions about the purposes of science, mathematics, and technology educationand their relationships to each other and to environmental education.

Last year, one of Canada’s well-known environmental educators, Bob Jickling of LakeheadUniversity, received an award from the North American Association for Environmental Education(NAAEE) for “Outstanding Contributions to Environmental Education Research.” Jickling is notthe only Canadian doing admirable work; indeed, Canada is one of the leading countries in thefield of environmental education. To maintain its position, environmental education research inCanada will need support from policy makers and from funding agencies. Moreover, it will needto forge alliances with those in the science, technology, and mathematics education communities

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 7: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

EDITORIAL 5

who are willing to contribute to the multidisciplinary and interdisciplinary research upon whichthe future of the field lies.

In closing, we wish to thank the authors who contributed to this issue, the reviewers (JanetDyment, Jo-Anne Ferreira, Lisa Korteweg, Marianne Krasny, Alex Lawson, and Alan Reid) whooffered detailed and thoughtful feedback to us and to the authors, and finally CJSMTE’s editor,John Wallace, for insisting it was time for a special issue on environmental education and invitingthe two of us to be involved. Let the conversations continue.

Connie RussellLakehead UniversityOntario, Canada

Justin DillonKing’s College LondonLondon, United Kingdom

NOTES

1. Parts of this editorial have been adapted from Dillon (2007), a short paper that was writtenafter the World Environmental Education Conference held in Durban, South Africa, in2007.

2. http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

3. http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

4. http://www.guardian.co.uk/commentisfree/cif-green/2009/nov/30/canada-tar-sands-copenhagen-climate-deal

5. http://www.nature.com/nature/journal/v451/n7181/full/451866a.html

REFERENCES

Carrington, D., & Goldenberg, S. (2009). Gordon Brown attacks “flat-earth” climate change skeptics. Retrieved December16, 2009, from http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

Dillon, J. (2007). La scienza di capire il futuro [Science to understand the future]. eco–l’educazione sostenibile, 7, 10–11.Dillon, J., & Scott, W. (2002). Editorial: Perspectives on environmental education-related research in science education.

International Journal of Science Education, 24(11), 1111–1117.Gough, A. (2002). Mutualism: A different agenda for environmental and science education. International Journal of

Science Education, 24(11), 1201–1215.Hart, P. (1990). Environmental education in Canada: Contemporary issues and future possibilities. Australian Journal of

Environmental Education, 6, 45–66.Monbiot, G. (2009). Canada’s image lies in tatters: It is now to climate what Japan is to whaling. Retrieved December 16,

2009, from http://www.guardian.co.uk/commentisfree/cif-green/2009/nov/30/canada-tar-sands-copenhagen-climate-deal.

Nature (2009). Science in retreat. Retrieved December 16, 2009, from http://www.nature.com/nature/journal/v451/n7181/full/451866a.html.

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 8: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

6 EDITORIAL

Ontario Ministry of Education. (2007). Shaping our schools, shaping our future: Environmental education in Ontarioschools. Toronto: Author.

Ontario Ministry of Education. (2009). Acting today, shaping tomorrow: A policy framework for environmental educationin Ontario schools. Toronto: Author.

Russell, C., Bell, A., & Fawcett, L. (2000). Navigating the waters of Canadian environmental education. In T. Goldstein &D. Selby (Eds.), Weaving connections, educating for peace, social and environmental justice (pp. 196–217). Toronto:Sumach Press.

Simmons, B. (2004). Guidelines for the preparation and professional development of environmental educators. Wash-ington, DC: North American Association for Environmental Education.

Sjøberg, S., & Schreiner, C. (2005). How do learners in different cultures relate to science and technology? Results andperspectives from the project ROSE. Asia Pacific Forum on Science Learning and Teaching, 6, 1–16.

Formation environnementale et formation en sciences,technologies, ingenierie et mathematiques : temps

nouveaux et alliances nouvelles?

Au debut du 20e siecle, la vie humaine etait menacee principalement par les maladies, etl’esperance de vie moyenne en Grande Bretagne etait de 45 ans. Au debut du 21e siecle, l’esperancede vie moyenne est passee a 75 ans, un changement stupefiant en 100 ans, qui s’est realise surtoutgrace aux progres scientifiques, medicaux et technologiques. Cependant, une esperance de viesuperieure va de pair avec une population plus nombreuse, ce qui, conjointement a une de-mande croissante pour une meilleure qualite de vie, a provoque une crise environnementale sansprecedent. Bien sur, les sciences et les technologies ne manqueront pas de fournir certaines so-lutions aux problemes, mais sans une population bien informee et prete a modifier ses facons devivre et de travailler, l’avenir de la planete s’annonce plutot sombre.

Cet editorial1 a ete ecrit en pleine Conference des Nations Unies sur le Changement Climatique(COP15). Au moment ou paraıtra ce numero special de la Revue canadienne de l’enseignementdes sciences, des technologies et des mathematiques, nous saurons si ce sommet a marque ledebut d’une nouvelle ere ou s’il ne constitue qu’un pas dans la bonne, ou la mauvaise, direction.

Pour les personnes qui comme nous vivent de chaque cote de l’Atlantique, dans deux paysdeveloppes qui partagent une histoire commune mais dont la situation politique est fort differente(bien que cette difference pourrait se reduire considerablement apres les prochaines electionsbritanniques en 2010), la globalite de nombreuses questions environnementales est on ne peutplus claire. Mais on sait aussi que la conference est un evenement hautement politise—avec toutce que cela implique –, et que les questions qui touchent la formation scientifique sont toujoursactuelles et pressantes.

Quelques semaines seulement avant la Conference, environ 160 MB de donnees, provenanten apparence de l’Unite de recherche sur le climat de l’Universite d’East Anglia, ont ete publieessur le reseau internet. Courriels et documents, censes provenir des plus grands scientifiques dansle domaine des changements climatiques, etaient diffuses comme « preuves tangibles » d’unecollusion visant a nier la verite devant le public et les responsables politiques. Les denis de plusen plus nombreux concernant les changements climatiques dans les semaines qui ont precede lesommet, et la febrilite manifestee dans certains milieux a la seule pensee d’une « fraude » de

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 9: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

EDITORIAL 7

la part des chercheurs, soulevent de serieuses questions sur la nature des preuves, la nature dessciences et le role de l’enseignement lorsqu’il s’agit de promouvoir l’information et l’engagementdu public.

La reaction politique au Royaume Uni a ete remarquablement forte. Le Premier ministreGordon Brown a declare au Guardian: « A quelques jours seulement de la conference deCopenhague, nous ne devons pas nous laisser distraire par les attitudes retrogrades et anti-scientifiques de certains sceptiques du climat »2 . Il a ajoute: « nous sommes au courant desdonnees scientifiques. Nous savons ce que nous devons faire. Il nous faut maintenant agir etreduire de 5 milliards de tonnes les emissions de CO2. Voila ce qui reglera la question ».

Selon le secretaire a l’Environnement britannique Ed Miliband, « les saboteurs du climat fontun usage impropre des donnees dans le but de fourvoyer le public. Ils se servent de la sciencea des fins politiques, et ils le font de facon dangereuse et malhonnete. Cependant, malgre ceque certains voudraient nous faire croire, il n’existe aucune solution facile aux problemes posespar le changement climatique. Les preuves parlent clair et nous avons peu de temps pour agir.Abandonner ce processus maintenant conduirait des millions de personnes a la catastrophe. »3

Malheureusement, l’attitude recente du gouvernement canadien a ete fort differente de cellede la Grande Bretagne. De nombreux Canadiens se sont sentis horriblement genes par un articlede George Monbiot publie en novembre 2009 dans le Guardian, intitule: « L’image du Canadaen lambeaux. Le Canada est maintenant au climat ce que le Japon est a la baleine ». Monbioty qualifie le Canada de « petro-Etat corrompu » et de « nation qui a fait le plus pour saboterun nouvel accord sur le changement climatique ».4 Cet etat de choses n’est guere surprenant sil’on songe a l’ideologie « antiscientifique » du gouvernement Harper. En effet, la revue Nature apublie l’an dernier un article pour denoncer la decision du gouvernement de fermer les bureauxdu conseiller national des sciences, de museler les scientifiques d’Environnement Canada et dereduire les investissements dans la recherche scientifique.5

Dans cette triste conjoncture d’occasions perdues, que sommes-nous en mesure d’apprendreau sujet de l’enseignement en matiere d’environnement, de sciences, de technologies et demathematiques? Les principales questions environnementales et les idees cles qui caracterisent lesapproches dans ces domaines sont-elles largement meconnues du public? Les systemes scolairesde nos deux pays nous ont-ils tous laisse tomber? Nos curriculums sont-ils terriblement desuets etnon pertinents? Les connaissances des enseignants sont-elles a la hauteur des questions a traiter?La formation environnementale a-t-elle—ou peut-elle-meme avoir—un impact?

Les modeles actuels de formation scientifique n’ont pas reussi a former suffisamment lapopulation pour qu’elle soit en mesure de vouloir et de pouvoir agir au niveau individuel et societal.Les donnees provenant de l’etude ROSE (Relevance of Science Education) indiquent que dansde nombreux pays, les sciences ont moins de succes aupres des eleves que d’autres disciplinesdu curriculum (Sjøberg et Schreiner, 2005). L’enseignement des sciences, des technologies, del’ingenierie et des mathematiques ne donne guere une image fidele de la facon dont les sciencesfonctionnent; la plupart des enfants ne s’imaginent pas comme futurs scientifiques ou ingenieurs,et, lorsqu’ils atteignent l’age de 14 ans, leur choix de carriere est souvent deja fait. Tout indiquedonc qu’il faut modifier l’enseignement de ces disciplines de facon a refleter les besoins desetudiants, pour ainsi produire non seulement un nombre suffisant de scientifiques et d’ingenieurs,mais aussi une societe qui ait de bonnes connaissances scientifiques de base.

En d’autres mots, il nous faut un enseignement des sciences et des disciplines scientifiquesdifferent. Et dans ce contexte, ou se situe la formation environnementale? S’agit-il simplement

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 10: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

8 EDITORIAL

d’une sous-discipline scientifique? Quel est, ou quel pourrait etre, le role de l’approche STSE (sci-ences, technologies, societe, environnement) dans cette formation? Dans quelle mesure la forma-tion environnementale et l’enseignement des technologies sont-ils inter-relies? Et enfin, pourquoiy a-t-il si peu de liens explicites entre l’enseignement des mathematiques et l’enseignement desquestions environnementales?

Comme nous l’avons dit ailleurs, « la formation environnementale offre une richesse con-ceptuelle qui bouleverse la pensee actuelle en enseignement des sciences en raison de sonorigine et de ses traditions multidisciplinaires » (Dillon et Scott, 2002, p. 1112). Annette Gough,chercheure australienne en didactique environnementale, indique clairement la voie a suivre: «Pour le bien de l’enseignement des sciences, il est necessaire que la formation environnementaleprenne la place qui lui revient dans le curriculum et fasse en sorte que les sciences attirent unplus grand nombre d’etudiants grace a des contenus plus pertinents sur le plan culturel et social »(Gough, 2002, p.1210). Gough ajoute que « l’enseignement des sciences doit soutenir les objec-tifs de la formation environnementale et accorder a celle-ci une place legitime dans le curriculumqui lui permettre de les atteindre, car il est fort improbable qu’ils puissent etre atteints a partird’une position marginale » (p. 1210). Quant a ce que l’enseignement des sciences et des questionsenvironnementales sont en mesure d’offrir:

[ . . . ] nous devons surtout aider les apprenants a affronter la grande complexite, tout autant quela grande beaute, de l’environnement, et trouver des facons de se servir de l’environnement localcomme vehicule pour mieux faire comprendre les aspects plus pratiques ou terre-a-terre du curriculumscientifique. (Dillon et Scott, 2002, p.1112)

Il nous faut passer d’une « vision de l’environnement comme objet de consideration des conceptsscientifiques, a une vision de l’enseignement des sciences, des technologies, de l’ingenierie et desmathematiques comme une formation qui, plus justement, aide les etudiants a mieux comprendreles problemes environnementaux dans le contexte de leur vie personnelle, et leur vie personnelledans le contexte des questions environnementales », car « la separation entre notre identite etnotre environnement est artificielle » (Dillon et Scott, p.1112p. 1112). Sans formation approprieedans toutes ces disciplines, les citoyens de demain ne seront guere en mesure d’apprecier leurrapport a l’environnement, et risquent de ne pas savoir faire les choix susceptibles de garantir unavenir durable.

Ce numero special couvre une gamme de sujets qui vont bien au-dela du changement clima-tique et ne se limitent pas au Canada et au Royaume-Uni. Allant d’une analyse des curriculumssud-africains a une enquete collaborative au sujet d’un cours a distance sur la formation en-vironnementale dans une universite americaine, en passant par une etude sur la facon dont lesenfants suisses percoivent les sciences, les technologies et l’environnement, et une enquete sur lesexperiences pedagogiques en matiere d’environnement des enseignants de l’Ontario (Canada),chacun de ces articles propose egalement le type de reflexion critique que nous preconisons dansces pages.

Dans son article, Lesley Le Grange trace d’abord brievement l’histoire de la formation envi-ronnementale dans les ecoles sud-africaines, y compris les tentatives de la part du gouvernementde depolitiser cet enseignement durant l’apartheid. Apres l’apartheid, de serieux efforts ont etefaits pour inclure la formation environnementale dans les curriculums de toute l’Afrique du Sud.Le Grange fait une analyse detaillee des documents courants du curriculum et souligne aussibien les developpements positifs (par exemple dans le cas des curriculums de sciences naturelles)

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 11: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

EDITORIAL 9

que les aspects preoccupants (par exemple dans les standards d’evaluation en mathematiques, ouil est frequemment question de l’environnement, mais le plus souvent a titre accessoire et noncomme reflet d’une reelle volonte d’integrer les mathematiques et la formation environnemen-tale). En general, Le Grange constate que la portee de « l’environnement » dans les curriculumssud-africains demeure anthropocentrique et axee surtout sur les aspects biophysiques plutotque sociaux, politiques et economiques. Il mentionne egalement d’autres defis qui attendent laformation environnementale, par exemple un cadre programmatique fonde sur les resultats, uneformation insuffisante des enseignants et un manque de soutien. Toutefois, s’inspirant des theoriesradicales sur les curriculums, Le Grange termine sur une note encourageante et invite les acteursa s’eloigner des discours actuels axes sur la critique et les possibilites, pour embrasser un discoursaxe plutot sur les probabilites, qui exige la participation et l’engagement de multiples partenaires,y compris les milieux scolaires, les universites et les ONG.

Dans un autre article, Christine Moseley, Rosalie Herber, Jennifer Brooks et Lisa Schwartzdecrivent leurs experiences comme enseignantes dans un cours universitaire a distance sur laformation environnementale. Elles analysent le paradoxe apparent d’un apprentissage en for-mation environnementale dans le contexte d’un environnement virtuel. A partir de la litteraturesur l’enseignement a distance et la formation environnementale, elles analysent les tensionsqui existent entre les deux. Une part importante de la formation environnementale privilegieles experiences sur le terrain en milieu naturel, c’est pourquoi l’idee d’un enseignement encontexte virtuel deplait a plusieurs. Pourtant, on veut elargir la portee de la formation envi-ronnementale pour qu’elle puisse atteindre un public plus vaste, et l’apprentissage en ligneoffre l’avantage de la rendre plus accessible. A ce jour, peu d’etudes sur la formation a dis-tance ou la formation environnementale ont eu pour objet l’impact de l’environnement virtuelsur l’apprentissage des eleves. Moseley et ses collegues tentent de combler cette lacune gracea leur propre enquete collaborative. Armees du Guide de formation et de perfectionnementprofessionnel des enseignants en environnement (Simmons, 2004) de la NAAEE (Associationnord-americaine pour la formation environnementale), elles constatent que leur cours en lignerepond effectivement a trois des quatre criteres preconises par le Guide. Il va de soi que lecours n’offre pas l’occasion de participer a des experiences sur le terrain en milieu naturel, maisles etudiants etaient tous des adultes qui poursuivaient des etudes superieures et qui tiraientprofit d’experiences precedentes. Comme lecteurs, nous nous interrogeons donc sur le role quepourrait jouer l’apprentissage en ligne aupres d’eleves plus jeunes. En plein cœur d’un debathautement polarise qui oppose « l’environnement » et « les technologies », nous estimons qu’ily a la plusieurs lacunes theoriques et pratiques a combler, mais aussi un secteur de recherche adevelopper.

Pour leur part, Albert Zeyer et Stefanie Kagi ont mene une etude aupres de 408 enfants suissesages de 11 a 13 ans. Au moyen de dessins et d’une version adaptee de certaines questions tireesde l’etude ROSE (dont il est question plus haut), ils ont analyse les idees des eleves sur le roledes sciences et des technologies en contexte environnemental. Dans une etude precedente aupresd’etudiants suisses de 15 et 16 ans, Zeyer et Kagi avaient constate que les etudiants inclinaientvers le materialisme et l’hedonisme, et que leur attitude pouvait au mieux etre qualifiee commeune forme de scientisme, selon laquelle les sciences n’ont pas a etre remises en question carelles beneficient d’une sorte de privilege epistemique. Les auteurs ont ete quelque peu surpris desresultats de leur recherche aupres des eleves plus jeunes. Contrairement a celle de leurs aines,l’attitude de ces eleves est idealiste et ecocentrique, et represente les sciences et les technologies

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 12: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

10 EDITORIAL

comme cause de degradation environnementale. Zeyer et Kagi s’interrogent sur les implicationsde cette etude pour l’enseignement des sciences et des technologies. Comme lecteurs, nous nousdemandons ce qui peut bien se passer chez les enfants suisses entre l’age de 13 et 15 ans.L’enseignement des sciences, des technologies et des questions environnementales joue-t-il unrole dans ce passage de l’ecocentrisme au scientisme?

Quant a Michael Tan et Erminia Pedretti, ils nous proposent un apercu de l’etat actuel dela formation environnementale en Ontario, telle que vecue par les enseignants. Au premierabord, il y aurait lieu d’etre optimiste puisque le ministere de l’Education de l’Ontario a publieen 2007 un rapport soulignant l’importance de la formation environnementale (et s’est engagepubliquement a mettre en pratique les 32 recommandations de ce rapport), suivi l’an dernierd’un cadre politique pour la formation environnementale (ministere de l’Education de l’Ontario,2009). Le portrait de la situation que tracent Tan et Pedretti est au contraire plutot desolant.A l’instar des resultats d’etudes precedentes sur la formation environnementale canadienne(par exemple Hart, 1990; Russell, Bell et Fawcett, 2000), les enseignants qui ont participea cette recherche s’inquietent de problemes tels un curriculum trop charge qui laisse peu detemps a disposition pour la formation environnementale, des ressources insuffisantes, et le peud’importance accorde a la formation environnementale en milieu scolaire. Tan et Pedretti soulig-nent cependant qu’il est parfois trop facile de rejeter le blame sur ces facteurs externes, c’estpourquoi ils proposent d’analyser certaines questions plus en profondeur, par exemple la na-ture meme de la formation scolaire (comme moteur de reproduction sociale) et le fait que noussommes tous plus ou moins imbriques dans une societe plus vaste, generalement contraire al’environnement.

Si nous regardons ce numero dans son ensemble, cela nous ramene au moment ou nous avonspublie l’appel de manuscrits: nous n’etions pas en mesure de prevoir le type de textes qui nousparviendraient. Nous esperions recevoir des articles qui analyseraient les liens, les disjonctions,les ecueils, voire les possibilites engendrees par differentes tentatives d’integrer la formation en-vironnementale et l’enseignement des sciences, des mathematiques et des technologies. La teneurdes manuscrits que nous avons recus indique que la reflexion sur ces questions est plutot avanceeen enseignement des sciences, qu’elle prend de plus en plus d’importance en enseignement destechnologies, mais qu’elle est a peu pres inexistante en enseignement des mathematiques. Quanta une approche integree qui unirait les quatre disciplines, elle semble encore une idee toutetheorique. Comme nous le proposons plus haut, nous devons donc continuer a nous interroger surles objectifs de l’enseignement des sciences, des mathematiques et des technologies, de memeque sur les liens qui d’une part unissent ces disciplines entre elles, et d’autre part les rapprochentde la formation environnementale.

Bob Jickling, pedagogue canadien de l’Universite Lakehead bien connu en formation envi-ronnementale, recevait l’an dernier un prix de la NAAEE (Association nord-americaine pourla formation environnementale) pour sa « Contribution extraordinaire a la recherche en for-mation environnementale ». Jickling n’est pas le seul Canadien a faire un excellent travaildans ce domaine; en effet, le Canada est un pays de pointe en matiere de formation en-vironnementale. Cependant, pour maintenir sa position, la recherche en formation environ-nementale canadienne a besoin du soutien des responsables politiques et des organismes definancement. De plus, elle devra forger des alliances avec ceux qui, dans le domaine del’enseignement des sciences, des technologies et des mathematiques, souhaitent contribuer a

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 13: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

EDITORIAL 11

une recherche de type multidisciplinaire et interdisciplinaire, sur laquelle repose l’avenir de cetteformation.

En terminant, nous tenons a remercier les auteurs qui ont contribue a ce numero, les evaluateursdes manuscrits (Janet Dyment, Jo-Anne Ferreira, Lisa Korteweg, Marianne Krasny, Alex Lawsonand Alan Reid) pour leurs commentaires detailles et soignes, et enfin M. John Wallace, redacteuren chef de la RCESMT , pour avoir eu l’idee de ce numero special et pour nous avoir demanded’y participer. Que les discussions continuent!

Connie RussellUniversite LakeheadOntario, Canada

Justin DillonKing’s College LondresLondon, United Kingdom

NOTES

1. Certaines partie de cet editorial ont ete adaptees d’un article de Dillon (2007), ecrit apresla Conference sur la formation environnementale tenue a Durban, Afrique du Sud, en2007.

2. http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

3. http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

4. http://www.guardian.co.uk/commentisfree/cif-green/2009/nov/30/canada-tar-sands-copenhagen-climate-deal

5. http://www.nature.com/nature/journal/v451/n7181/full/451866a.html

REFERENCES BIBLIOGRAPHIQUES

Carrington, D., & Goldenberg, S. (2009). Gordon Brown attacks “flat-earth” climate change skeptics. Retrieved December16, 2009, from http://www.guardian.co.uk/environment/2009/dec/04/flat-earth-climate-change-copenhagen

Dillon, J. (2007). La scienza di capire il futuro (“Science to understand the future”). eco—l’educazione sostenibile,7(September), 10–11.

Dillon, J. et Scott, W. (2002) Editorial: Perspectives on environmental education-related research in science education.International Journal of Science Education, 24(11), 1111–1117.

Gough, A. (2002). Mutualism: A different agenda for environmental and science education. International Journal ofScience Education, 24(11), 1201–1215.

Hart, P. (1990). Environmental education in Canada: Contemporary issues and future possibilities. Australian Journal ofEnvironmental Education, 6, 45–66.

Monbiot, G. (2009). Canada’s image lies in tatters: It is now to climate what Japan is to whaling. Retrieved December 16,2009, from http://www.guardian.co.uk/commentisfree/cif-green/2009/nov/30/canada-tar-sands-copenhagen-climate-deal.

Nature (2009). Science in retreat. Retrieved December 16, 2009, from http://www.nature.com/nature/journal/v451/n7181/full/451866a.html.

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014

Page 14: Environmental Education and STEM Education: New Times, New Alliances?/Formation environnementale et formation en sciences, technologies, ingénierie et mathématiques: temps nouveaux

12 EDITORIAL

Ontario Ministry of Education (2007). Shaping our schools, shaping our future: Environmental education in Ontarioschools. Toronto: Author.

Ontario Ministry of Education (2009). Acting today, shaping tomorrow: A policy framework for environmental educationin Ontario schools. Toronto: Author.

Russell, C., Bell, A., et Fawcett, L. (2000). Navigating the waters of Canadian environmental education. In T. Goldstein etD. Selby (Ed.), Weaving connections, educating for peace, social and environmental justice (pp. 196–217). Toronto:Sumach Press.

Simmons, B. (2004). Guidelines for the preparation and professional development of environmental educators. Wash-ington, DC: North American Association for Environmental Education.

Sjøberg, S., & Schreiner, C. (2005). How do learners in different cultures relate to science and technology? Results andperspectives from the project ROSE. Asia Pacific Forum on Science Learning and Teaching, 6, 1–16.

Dow

nloa

ded

by [

Uni

vers

ity o

f C

ambr

idge

] at

03:

41 0

5 D

ecem

ber

2014