18
-1- METHODES D’ESTIMATION DES PRESSIONS INDUITES DANS LES CHANTIERS REMBLAYES Michel Aubertin 1,* , Li Li 1 , Tikou Belem 2 , Richard Simon 1 , André Harvey 3 , Michael James 1 , Mostafa Benzaazoua 2 , Bruno Bussière 2,* 1 École Polytechnique de Montréal 2 Université du Québec en Abitibi-Témiscamingue 3 Cambior (maintenant Mine Raglan, Falconbridge) * Chaire Industrielle CRSNG Polytechnique-UQAT en environnement et gestion des rejets miniers (http://www.polymtl.ca/enviro-geremi/) RESUME Le remblayage de chantiers souterrains avec des rejets miniers, tel le remblai en pâte, est devenu une pratique courante dans l’industrie minière. Cette approche comporte de nombreux avantages environnementaux, notamment en réduisant la quantité de rejets entreposés en surface. Ce remblai placé dans les chantiers ouverts représente également un mode de contrôle du terrain autour des ouvertures souterraines. Pour cette raison, on doit évaluer le comportement mécanique du remblai minier et son interaction avec le massif rocheux adjacent et avec les structures de support (tel les barricades). Dans cet article, on présente diverses solutions analytiques (existantes et en développement) pour évaluer l’état des contraintes dans le remblai et sur les épontes du chantier, en fonction des configurations géométriques et des propriétés des matériaux. On aborde aussi les récents développements relatifs aux méthodes numériques pour analyser les contraintes induites.

METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

Embed Size (px)

Citation preview

Page 1: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-1-

METHODES D’ESTIMATION DES PRESSIONS INDUITES DANS LES CHANTIERS REMBLAYES

Michel Aubertin1,*, Li Li1, Tikou Belem2, Richard Simon1,

André Harvey3, Michael James1, Mostafa Benzaazoua2, Bruno Bussière2,*

1 École Polytechnique de Montréal 2 Université du Québec en Abitibi-Témiscamingue

3 Cambior (maintenant Mine Raglan, Falconbridge) * Chaire Industrielle CRSNG Polytechnique-UQAT

en environnement et gestion des rejets miniers (http://www.polymtl.ca/enviro-geremi/)

RESUME

Le remblayage de chantiers souterrains avec des rejets miniers, tel le remblai en pâte, est devenu une pratique courante dans l’industrie minière. Cette approche comporte de nombreux avantages environnementaux, notamment en réduisant la quantité de rejets entreposés en surface. Ce remblai placé dans les chantiers ouverts représente également un mode de contrôle du terrain autour des ouvertures souterraines. Pour cette raison, on doit évaluer le comportement mécanique du remblai minier et son interaction avec le massif rocheux adjacent et avec les structures de support (tel les barricades). Dans cet article, on présente diverses solutions analytiques (existantes et en développement) pour évaluer l’état des contraintes dans le remblai et sur les épontes du chantier, en fonction des configurations géométriques et des propriétés des matériaux. On aborde aussi les récents développements relatifs aux méthodes numériques pour analyser les contraintes induites.

Page 2: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-2-

1. INTRODUCTION

Le remblayage des chantiers miniers est devenu une pratique courante dans les exploitations souterraines, au Canada et ailleurs dans le monde (Thomas et al. 1979; Singh et Hedley 1981; Hassani et al. 1989; Hassani et Archibald 1998). À cet égard, le remblai en pâte, typiquement formé à partir d’un mélange de rejets de concentrateur, d’eau et de ciment, a engendré une recrudescence de l’intérêt pour cette pratique (e.g., Brummer et al. 1996; Bloss 1998; MRNQ 1997; Landriault et al. 2000; Belem et al. 2000; Grice 2004). Bien que présentant des avantages environnementaux indéniables, en regard de la réduction des volumes de rejets entreposés en surface, le remblayage souterrain a toutefois pour objectif premier d’assurer la stabilité des ouvertures minières pour extraire le mimerais de façon plus complète. Il faut donc accorder une attention particulière au volet contrôle de terrain. Le remblayage touche à plusieurs aspects de l’opération d’une mine, incluant la planification et l’ingénierie, la géomécanique, le traitement du minerai (pour le remblai en pâte) et la gestion environnementale du site. Il s’agit donc d’une activité qui fait appel à plusieurs expertises tel la mécanique des roches, la mécanique des sols (comportement géotechnique du remblai), la géochimie (pour l’eau, le liant, et les rejets), la minéralogie (le moulin est la source des rejets), la rhéologie des pulpes (pour le transport hydraulique du remblai) et l’hydrogéologie (pour l’écoulement de l’eau dans le massif rocheux et dans le remblai). Une combinaison de connaissances issues de ces domaines est requise pour bien comprendre les phénomènes qui se développent dans les chantiers remblayés. Les connaissances relatives au remblayage souterrain sont encore relativement à leurs débuts, de sorte que plusieurs aspects liés au comportement des chantiers remblayés sont encore méconnus. C’est notamment le cas pour les interactions mécaniques qui se développent entre le remblai et le massif rocheux. Ce sujet est d’ailleurs à l’étude depuis quelques années de la part des auteurs (e.g., Aubertin 1999; Aubertin et al. 2002, 2003; Li et al. 2003, 2004, 2005a, b; Belem et al. 2004; Harvey 2004; James et al. 2004). Les propriétés mécaniques des deux matériaux (remblais et roches) étant très différentes, l’interaction entre ceux-ci s’avère complexe à étudier. Elle demande une bonne compréhension du comportement des matériaux eux-mêmes, ainsi que l’analyse des conditions qui se développent aux interfaces sous l’effet des contraintes naturelles. Tous ces phénomènes (mécanique, hydraulique et géochimiques) sont inter reliés. Par exemple, la résistance mécanique dépend de la porosité du milieu (Li et Aubertin 2003; Li et al. 2005b), qui dépend pour sa part des contraintes qui y sont générées. La porosité affecte aussi les propriétés hydrauliques (e.g., Aubertin et al. 1996, 1998, 2003), qui en retour affectent l’écoulement de l’eau. L’eau influence l’évolution de la résistance du remblai, et aussi la possible migration des contraintes (Benzaazoua et al. 2003). Il faut donc se donner

Page 3: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

des outils flexibles et robustes pour analyser ces effets couplés et en particulier pour estimer les contraintes qui peuvent se développer dans le remblai et sur les épontes des chantiers. Dans ce qui suit, certains des progrès réalisés aux cours des récentes années sont rappelés succinctement. On présente aussi la nature des principaux travaux en cours qui touchent l’évaluation des pressions dans les chantiers remblayés.

2. Chantiers verticaux

Solutions analytiques 2D

Le remblai est un matériau beaucoup plus déformable (moins rigide) que le massif rocheux encaissant. Suite à sa déposition dans les chantiers, le remblai a tendance à se tasser (consolider) sous l’effet de son propre poids. La roche qui constitue les épontes subit alors l’effet des contraintes de cisaillement générées aux interfaces avec le remblai. L’effet de la friction (et de la cohésion) transfère une partie du poids de terre aux épontes, suite aux déplacements. Ce type de transfère de charge est associé au phénomène d’effet d’arche (Marston 1930; Terzaghi 1943; Hunt 1986). Il s’agit d’un phénomène connu dans les milieux particulaires (poudres, grains) entreposés dans des silos et autres réservoirs étroits à parois rigides (Richards 1966; Cowin 1977). Marston (1930) a utilisé la théorie de l’effet d’arche de Janssen (1895) pour développer une série de solutions semi-analytiques permettant d’évaluer la charge sur les conduites placées en tranchées (e.g., Spangler et Handy 1984; McCarthy 1988). Cette approche peut être adaptée au cas des chantiers remblayés étroits, afin d’obtenir une estimation des contraintes sur les épontes et au bas des ouvertures (Aubertin 1999). Dans le cas de base, inspirée directement des solutions proposées par Marston (1930), les équations obtenues sont valables pour un chantier vertical (figure 1). Elles peuvent être formulées comme suit (Aubertin et al. 2003):

{ }⎥⎦

⎤⎢⎣

⎡ −−=

'B/Kz

KB

z φφγσ

tan2'tan2exp1

v [1]

{ }⎟⎟⎠

⎞⎜⎜⎝

⎛ −−=

''B/KzBz φφγσ

tan2tan2exp1

h [2]

où z est la profondeur du point de calcul dans le remblai, γ est le poids unitaire du remblai, σvz et σvz sont les contraintes verticale et horizontale à la profondeur z du remblai, φ’ est l’angle de frottement du remblai, B est la largeur du chantier remblayé (figure 1). Dans ces équations, le coefficient K représente le rapport des contraintes horizontales sur verticales dans le remblai ( zz /K vh σσ= ). La valeur de K est généralement exprimée en fonction des propriétés du matériau. Pour le cas d’un remblai faiblement cimenté, la solution usuelle serait celle du cas des terres au repos: K = K0 ≅ 1 – sinφ' [3]

-3-

Page 4: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

D’autres valeurs de K peuvent aussi être considérées, selon le mouvement des épontes, l’inclinaison du chantier et les propriétés du remblai (e.g., Li et al. 2005b). L’application des équations qui précédent montre (tel qu’illustrée à la figure 2) que la différence entre la contrainte due au poids des terres (σvz = γz) et la contrainte verticale calculée σvz avec l’équation [1] augmente avec la profondeur. Toutefois, plus le chantier est large, moins l’effet d’arche est important (figure 2b). Si la largeur est égale à environ 4 à 5 fois la hauteur, l’effet d’arche devient négligeable (pour un chantier long), et la contrainte verticale tend vers le poids des terres.

H

B

V

V + dV

SS

CC W

dh

z

dh

B

chantierremblayé

espace vide

massif rocheux

massif rocheuxélément de couche

FIGURE 1. Un chantier vertical remblayé avec les composantes des forces sur l’élément de isolé (épaisseur unitaire); z est la profondeur du point de calculs; H est la hauteur du remblai; W est le poids de l’élément; V est la force verticale sur l’élément; C et S sont les forces normale et de cisaillement sur l’élément à l’interface.

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

-4-

H (m)

cont

rain

tes

(MPa

)

SIGvSIGhSIGvSIGh

B = 2 m

poids de terre

Marston

a)

0

0.04

0.08

0.12

0.16

0 5 10 15 20B (m)

cont

rain

te (M

Pa)

SIGvSIGhSIGvSIGh

H = 5 m

poids de terre

Marston

b)

FIGURE 2. Compairson entre les contraintes verticales (SIGv) et horizontales (SIGh) calculées selon le poids de terre et celles estimées avec la théorie de Marston (équations [1] et [2]), pour différentes hauteurs (a) et largeurs (b); φ' = 30°, γ = 0.02 MN/m3, et K = K0 = 0.5 (tiré de Aubertin et al. 2003).

Page 5: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

Solutions numériques

Les solutions analytiques proposées plus haut ont été comparées à des solutions numériques obtenues à l’aide des codes commerciaux (Aubertin et al. 2003; Li et al. 2003). En général, les résultats des calculs numériques sont proches des solutions analytiques pour des cas comparables (i.e. chantiers verticaux étroits sans mouvement des épontes). La figure 3 montre un exemple de comparaison des 2 types de résultats. Dans ce cas, les calculs numériques ont été effectués avec FLAC-2D (Itsaca 2002). Cette figure et la figure 4 illustrent le transfert des charges vers les épontes. Cet effet réduit les contraintes au b as des chantiers étroits (par à rapport au poids de terre).

remblai

E = 300 MPa

v = 0.2

γ = 0.018MN/m3

φ = 30°

c = 0

massif rocheux

(élastique linéaire)

E = 30 GPa

v = 0.3

γ = 0.027MN/m3

σv = γz

σh = 2σv

H =

20

m

B = 2 m

profondeur = 250m

0.5m espace vide

contrainte naturelle

massif rocheux

a)

0

0.1

0.2

0 9 18 27 36 45h (m)

xx (M

Pa)

modélisation avec FLAC -2D

selon poids de terre

K = 1/3

K = 1/2

b)

FIGURE 3. a) Géométrie du modèle numérique d’un chantier étroit; les propriétés du massif rocheux et du remblai sont données en utilisant les notations classiques de géomécanique; b) Comparaison of des contraintes horizontales σxx le long de la mur à différente profondeur h estimées avec les solutions analytique et numérique de FLAC-2D (Itasca 2002) (tiré de Li et al. 2003). -5-

Page 6: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

a)

b) FIGURE 4: Distribution de contraintes dans le chantier remblayé calculée avec FLAC-2D: a) contrainte verticale σyy; b) contrainte horizontale σxx (tiré de Li et al. 2003).

3. Chantiers inclinés

La plupart des chantiers miniers sont inclinés par rapport à la verticale. Une faible inclinaison ne devrait pas trop influencer le champ des contraintes dans le remblai (e.g., Knutsson 1981). Cependant, on ne s’entend pas nécessairement sur l’angle limite à partir duquel cet effet ne peut plus être négligé. -6-

Page 7: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

Une solution analytique 2D, basée sur l’approche de Marston, a été proposée par Li et al. (2005b). La géométrie du problème est montrée de façon schématique à la figure 5. Les principales équations qui en découlent peuvent s’écrire comme suit:

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛−−=

DzD

αλαλγσ

tan1exp1tanv [4]

( )

( ) ⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛−

++

=DzD

αλδδδαδαγ

σtan1exp1

sinsincossin

hf

hféi [5]

( )

( ) ⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛−

+−

=DzD

αλδδδαδαγ

σtan1exp1

sinsincossin

hf

fhés [6]

avec

( )( )

( )*

*h

hf

f

cossin

sin cos

21

φφδα

δδδα

λ++

+−

−= [7]

où σv est la contrainte verticale; σéi et σés sont les contraintes normales aux épontes inférieures et supérieures respectivement. Ces équations montrent que les contraintes ne sont pas les mêmes sur les deux épontes. Ceci est illustré à la figure 6.

élément de couche

épontesupérieure

remblai

espace vide

éponte inférieure(massif rocheux)

z

D

α

W dz

D

V

Ff

Fh

Sh Sf

V + dV

T

T + dT

plancher du chantier

massifrocheux

Figure 5: Schéma d’un chantier incliné remblayé et les forces sur un élément mince (tiré de Li et al. 2005b).

-7-

Page 8: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

0.05

0.1

0.15

0 10 20 30 40 5

z (m)

cont

rain

te n

orm

ale

sur l

'épo

nte

supé

rieur

e (M

Pa)

0

90° 80° 70°

60° 50° 40°

a)

0

0.05

0.1

0.15

0 10 20 30 40 50

z (m)

cont

rain

te n

orm

ale

sur l

'épo

nte

infé

rieur

e (M

Pa)

90° 80° 70°

60° 50° 40°

b)

-8-

Page 9: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

0.05

0.1

0.15

0 10 20 30 40 5

z (m)

cont

rain

te v

ertic

ale

(MPa

)

0

90° 80° 70°

60° 50° 40°

c)

Figure 6: Effet de l’inclination α du chantier sur les contrainte normales agissant sur l’éponte supérieure (a) et inférieure (b) et sur la contrainte verticale dans le remblai (c);

calculées avec les équations [4] – [7], avec φ = 30°, γ = 18 kN/m3, D = 6 m (tiré de Li et al. 2005b).

Les résultats des solutions analytiques ont aussi été comparés aux résultats numériques obtenus avec FLAC-2D. Pour le problème montré à la figure 7, on peut voir que la concordance obtenue est encourageante mais elle laisse encore place à l’amélioration. D’autres travaux sont en cours pour tenter de mieux relier les solutions obtenues avec ces deux approches. La solution analytique a aussi été comparée avec des mesures réalisées sur le terrain, publiées par Knutsson (1981). Les comparaisons sont en général satisfaisantes dans les cas où la convergence des épontes est négligeable (figure 8, courbes 2FA7, 2FD7, 2FE4). Lorsque la convergence est significative, elle affecte la pression mesurée dans les chantiers; c’est le cas de la courbe 2FB4 sur la figure 8a. Dans ce cas, le modèle analytique n’est plus représentatif des conditions réelles. Des modifications doivent être apportées pour tenir compte de cet aspect.

-9-

Page 10: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-10-

45 m

profondeur = 250 m

0.5m

x

y

D = 6 m

α

z

espace vide

remblai

massif rocheux

massifrocheux

γH

2γH

contrainte naturelledans le massifrocheux

σf

σh

massif rocheux

chantier

a)

0

0.05

0.1

0.15

0 10 20 30 40 50

z (m)

cont

arin

te n

orm

ale

(MPa

)

solution proposée

FLAC-2D

α = 90°

b)

Page 11: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

0.05

0.1

0.15

0.2

0 10 20 30 40 5

z (m)

cont

rain

te n

orm

ale

(MPa

)

0

sur l'éponte supérieuresur l'éponte inférieuresur l'éponte inférieurealong hanging wall

solution proposée

α = 80°

FLAC-2D

c)

0

0.05

0.1

0.15

0.2

0 10 20 30 40

z (m)

cont

rain

te n

orm

ale

(MPa

)

50

sur l'éponte inférieuresur l'éponte supérieuresur l'éponte inférieuresur l'éponte supérieure

solution proposée

α = 50°

FLAC-2D

d)

FIGURE 7. Un chantier incliné remblayé modélisé avec FLAC-2D (les propriétés sont données à la figure 3a) (a); comparaisons des contraintes normales sur les épontes inférieure et supérieure avec différents angles d’inclinaison du chantier calculées en utilisant la solution proposée et estimées avec FLAC-2D; φ = 30°: b) α = 90°; c) α = 80°; d) α = 50° (tiré de Li et al. 2005b).

-11-

Page 12: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

100

200

300

400

0 10 20 30 40 5

z (m)

cont

rain

tes

norm

ales

sur l

'épo

nte

supé

rieur

e (M

Pa)

0

selon solution proposée2FA72FB42FD72FE4

msures in situ

a)

0

100

200

300

400

0 10 20 30 40

z (m)

cont

rain

te v

ertic

ale

(MPa

)

50

selon solution proposée

mesure in situ

b)

FIGURE 8. Contrainte normale (a) et verticale (b) mesurée et calculée sur l’éponte supérieure dans le chantier #2; calculs avec φ = 36°, α = 67°, D = 14m (données tirées de Knutsson 1981) (résultats de calculs tirés de Li et al. 2005b).

-12-

Page 13: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

4. GEOMETRIE 3D

Contrairement à ce que sous-tendent les solutions bi-dimensionnelles présentées plus haut (i.e. déformation plane), la dimension longitudinale des chantiers n’est pas toujours grande par rapport à la largeur. Pour tenir compte de la présence des murs qui confinent le remblai aux extrémités des chantiers, une solution générale 3D a aussi été développée pat Li et al. (2005a). La figure 9 illustre la géométrie du problème posé. Les équations qui en découlent sont passablement plus élaborées que celle du cas 2D, et elles ne sont pas reproduites ici. On peut néanmoins montrer une comparaison des contraintes horizontales calculées pour un cas 2D et 3D. La figure 10 illustre l’effet du rapport h/B (a) (pour B = 6m et L = 10m) et du rapport L/B (b), pour les calculs réalisés avec les solutions 2D et 3D. Les résultats montrent que les différences entre les valeurs obtenues par les deux méthodes peuvent s’avérer très différentes selon le cas considéré. Ici, lorsque L/B approche une valeur de 4 à 6, cette différence devient négligeable, et la solution 2D peut être utilisée dans les calculs. Il est cependant important de noter ici que cela ne peut pas être considéré comme une conclusion générale puisque la différence entre les contraintes calculées avec les deux solutions (2D versus 3D) dépend des propriétés du remblai (c, φ) et la géométrie du chantier (B, L, h).

-13-

H

B

V

V + dV

S1

S3

C3

C1

W

dh

h

L

espace videmassif rocheux chantierremblayé

élément de couche

S4 C4

S2C2

(1)

(2)

(3)

(4)SL

SL + dSL

SB

SB + dSB

T1

T3

T4

T2

z y

x

FIGURE 9. Un chantier vertical remblayé avec les composantes de force sur l’élément de couche isolé (tiré de Li et al. 2005a).

Page 14: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

50

100

150

0 4 8 12 16

L /B

vh (k

Pa)

3D 2Da)

0

20

40

60

80

0 4 8 12

L /B

16

hh (k

Pa)

3D 2D

b)

FIGURE 10. Valeurs calculées pour les contraintes verticale (a) et horizontale (b) en fonction du rapport de longueur sur la largeur L/B obtenues en utilisant les solutions 2D et 3D (Li et al. 2005a) lorsque the remblai est dans un état au repos; B = 6 m, h = 10 m, c = 0.001 MPa, δ = φ = 30°, γ = 0.02 MN/m3 (tiré de Li et al. 2005a).

Modèles physiques

Les solutions analytiques 3D ont aussi été comparées à des mesures sur des modèles physiques (tirées de la littérature). La figure 11 montre une telle comparaison. Les détails de ces analyses ont été présentés par Li et al. (2005a). L’ensemble des résultats obtenus démontre que la solution proposée pour estimer l’état des contraintes dans les longs chantiers verticaux semble valable. En pratique, les chantiers peuvent toutefois différer de ce cas simplifié. C’est pour cette raison que la solution de base a été extensionnée, tel que montré dans ce qui suit.

1

2

3

4

cellules de pression

mur

ave

c ou

sans

couv

ertu

re d

epa

pier

de

sabl

e

mur mobile

a)

-14-

Page 15: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

0

10

20

30

0 50 100 150h (mm)

hh (k

Pa)

selon poids de terreselon solution 3D proposéedonnées

K 0

K a

b)

FIGURE 11. Comparaison entre les données obtenues sur un modèle physique à une échelle intermédiaire, avec un sable dense (données tirées de Take et Valsangkar 2001); a) montage de la boîte instrumentée en laboratoire; b) B × L = 1.5cm × 25.4cm, c = 0, γ = 554kN/m3, φ = 36°, δ1 = δ2 = δ3 = δ4 = 25° (tiré de Li et al. 2005a).

Discussion et conclusion

Les résultats montrés ici indiquent que les solutions proposées pour estimer les contraintes induites dans les chantiers remblayés semblent réalistes. Il reste toutefois des travaux supplémentaires à compléter afin de bien valider les approches proposées. D’autres mesures in situ, telles que celles réalisées par Harvey (2004; voir aussi Belem et al. 2004) sont nécessaires pour comparer les contraintes calculées par des méthodes analytiques et/ou numériques avec les valeurs obtenues en chantier. En ce sens, les techniques de mesures disponibles peuvent être améliorées afin de bien représenter ce qui se passe dans le remblai à proximité des épontes. De plus, le développement des solutions (analytiques et numériques) devrait être poursuivi afin d’inclure des lois de comportement plus représentatives du comportement des matériaux, et aussi les effets complexes de la géométrie. Enfin, les effets de l’eau (écoulement, pression interstitielle, rétention capillaire, etc) doivent être inclus dans les méthodes d’analyse. Il s’agit là des principaux éléments qui feront l’objet des travaux futurs.

Remerciements

Les auteurs soulignent le support financier de l’IRSST, du CRSNG et des partenaires de la Chaire industrielle Polytechnique-UQAT en environnement et gestion des rejets miniers (http://www.polymtl.ca/enviro-geremi/).

Références -15-

Page 16: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-16-

AUBERTIN, M. (1999). « Application de la mécanique des sols pour l'analyse du comportement des remblais miniers souterrains ». Short Course (unpublished lecture notes), 14e Colloque en Contrôle de Terrain, Val-d'Or, 23-24 mars 1999. Association Minière du Québec.

AUBERTIN, M., BUSSIERE, B., CHAPUIS, R.P. (1996). « Hydraulic conductivity of homogenized tailings from hard rock mines ». Canadian Geotechnical Journal, 33(3): 470-482.

AUBERTIN, M., RICARD, J-F., CHAPUIS, R.P. (1998). « Predictive model for the water retention curve: Application to tailings from hard-rock mines ». Canadian Geotechnical Journal, 35(1): 55-69.

AUBERTIN, M., BUSSIERE, B., BERNIER, L. (2002). « Environnement et gestion des rejets miniers ». Manual on CD-ROM, Presses Internationales Polytechniques.

AUBERTIN, M., LI, L., ARNOLDI, S., BELEM, T., BUSSIERE, B., BENZAAZOUA, M., SIMON, R. (2003). « Interaction between backfill and rock mass in narrow stopes ». In : Soil and Rock America 2003. Edited by P.J. Culligan, H.H. Einstein, and A.J. Whittle. Verlag Glückauf Essen (VGE), Essen, Germany, 1 : 1157-1164.

BELEM, T., BENZAAZOUA, M., BUSSIÈRE, B. (2000). « Mechanical behaviour of cemented paste backfill ». In : Proceedings of the 53rd Canadian Geotechnical Conference, Montréal, Octobre 2000. Canadian Geotechnical Society : 373-380.

BELEM, T., HARVEY, A., SIMON, R., AUBERTIN, M. (2004). « Measurement and prediction of internal stresses in an underground opening due to backfilling with cemented paste ». In : Fifth International Symposium on Ground Support in Mining and Underground Construction: Ground Support 2004, 28-30 September 2004, Perth, Western Australia.

BENZAAZOUA, M., FALL, M., BELEM, T. (2003). « A contribution to understanding the hardening process of cemented paste backfill ». Minerals Engineering, 17(2): 141–152.

BLOSS, M. (ed.) (1998). « Minefill ’98 ». In : Sixth International Symposium on Mining with Backfill, April 14-16 April 1998, Brisbane, Queensland, Australia. The Australasian Institute of Mining and Metallurgy.

BRUMMER, R.K., GUSTAS, R., LANDRIAULT, D.A., STEED, C.M. (1996). « Mining under backfill - Field measurements and numerical modelling ». In : Rock Mechanics - Tools and Techniques. Edited by M. Aubertin, F. Hassani, and H. Mitri. A.A. Balkema, Rotterdam, The Netherlands, 1 : 269-276.

COWIN, S.C. (1977). « The theory of static loads in bins ». Journal of Applied Mechanics, 44: 409-412.

GRICE, T. (2004). « Designing Narrow Undercut Backfill Exposures – Stiff Rock or Soft Paste? ». AMC Digging Deeper, 2004: 1-1 (http://www.amcconsultants.com.au/digging/2004/sept04.htm).

HARVEY, A. (2004). « Étude comparative des contraintes triaxiales dans le remblai en pâte selon la portée des chantiers ». M.Sc.A. thesis, École Polytechnique de Montréal.

HASSANI, F., ARCHIBALD, J.H. (1998). « Mine backfill ». CIM, CD-ROM. HASSANI, F.P., SCOBLE, M.J., YU, T.R. (eds.) (1989). « Innovations in Mining Backfill

Technology ». In : Proceedings of the 4th International Symposium on Mining with Backfill, Montreal, 2-5 October 1989. A.A. Balkema, Rotterdam.

Page 17: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-17-

HUNT, R.E. (1986). « Geotechnical engineering analysis and evaluation ». McGraw-Hill, New York.

ITASCA (2002). « FLAC - Fast Lagrangian Analysis of Continua, User’s Guide ». Itasca Consulting Group, Inc, Minneapolis, MN.

JAMES, M., LI, L., AUBERTIN, M. (2004). « Evaluation of the earth pressures in backfilled stopes using limit equilibrium analysis ». In: Proceedings of 57th Canadian Geotechnical Conference and the 5th joint CGS-IAH Conference, Quebec city, October 24-27, 2004. Canadian Geotechnical Society, 3A: 8-15.

JANSSEN, H.A. (1895). « Versuche über Getreidedruck in Silozellen ». Zeitschrift Verein Ingenieure, 39: 1045-1049.

KNUTSSON, S. (1981). « Stresses in the hydraulic backfill from analytical calculations and in-situ measurements ». In : Proceedings of the Conference on the Application of Rock Mechanics to Cut and Fill Mining. Edited by O. Stephansson, and M.J. Jones. Institution of Mining and Metallurgy, London : 261-268

LANDRIAULT, D.A., BROWN, R.E., COUNTER, D.B. (2000). « Paste backfill study for deep mining at Kidd Creek ». CIM Bulletin, 93(1036): 156-161.

LI, L., AUBERTIN, M. (2003). « A general relationship between porosity and uniaxial strength of engineering materials ». Canadian Journal of Civil Engineering, 30(4): 644-658.

LI, L., AUBERTIN, M., SIMON, R., BUSSIÈRE, B., BELEM, T. (2003). « Modeling arching effects in narrow backfilled stopes with FLAC ». In : FLAC and Numerical Modeling in Geomechanics – 2003. Edited by R. Brummer, P. Andrieux, C. Detournay, and R. Hart. A.A. Balkema, Rotterdam, The Netherlands : 211-219

LI, L., AUBERTIN, M., BELEM, T., SIMON, R., JAMES, M., BUSSIÈRE, B. (2004). « A 3D analytical solution for evaluating earth pressures in vertical backfilled stopes ». In : Proceedings of 57th Canadian Geotechnical Conference and the 5th joint CGS-IAH Conference, Quebec city, October 24-27, 2004. Canadian Geotechnical Society, 6F : 41-48.

LI, L., AUBERTIN, M., BELEM, T. (2005a). « Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings ». Canadian Geotechnical Journal (soumis).

LI, L., AUBERTIN, M., JAMES, M. (2005b). « A semi-analytical method to evaluate earth pressures in backfilled vertical and inclined stopes ». International Journal for Numerical and Analytical Methods in Geomechanics (soumis).

MARSTON, A. (1930). « The theory of external loads on closed conduits in the light of latest experiments ». Bulletin No. 96, Iowa Engineering Experiment Station, Ames, Iowa.

MCCARTHY, D.F. (1988). « Essentials of soil mechanics and foundations: Basic geotechnics ». Prentice Hall.

MRNQ (1997). RICHARDS, J.C. (1966). « The storage and recovery of particulate solids ». Institution of

Chemical Engineers, London. RICHMOND, O., GARDNER, G.C. (1962). « Limiting spans for arching of bulk materials in

vertical channels ». Chemical Engineering Science, 17: 1071-1078.

Page 18: METHODES D'ESTIMATION DES PRESSIONS INDUITES DANS

-18-

SINGH, K.H., HEDLEY, D.G.F. (1981). « Review of fill mining technology in Canada ». In : Proceedings of the Conference on the Application of Rock Mechanics to Cut and Fill Mining. Edited by O. Stephansson, and M.J. Jones. Institution of Mining and Metallurgy, London : 11-24.

SPANGLER, M.G., HANDY, R.L. (1984). « Soil engineering ». Harper and Row, New York, N.Y.

TAKE, W.A., VALSANGKAR, A.J. (2001). « Earth pressures on unyielding retaining walls of narrow backfill width ». Canadian Geotechnical Journal, 38: 1220-1230.

TERZAGHI, K. (1943). « Theoretical soil mechanics ». John Wiley & Sons. THOMAS, E.G., NANTEL, J.H., NOTLEY, K.R. (1979). « Fill technology in underground

metalliferous mines ». International Academic Services, Kingston, Canada.