25
1 SIMUDMRI ANR Cosinus 2010 Revue mars 2012 Modeling and simulation of diffusion MRI signal in biological tissue Institut national de recherche en informatique et en automatique (INRIA) Centre Saclay (Equipe-projet DEFI ) Centre Nancy (Equipe-projet TOSCA) Coordinateur: Jing-Rebecca Li Participants: Houssem Haddar, Armin Leichleiter, Antoine Lejay PhD: Dang Van Nguyen Commissariat à l'Énergie Atomique (CEA) Neurospin Coordinateur: Cyril Poupon Participants: Denis LeBihan PhD: Benoit Schmitt, Alice Lebois, Hang Tuan Nguyen

Modeling and simulation of diffusion MRI signal in biological tissue

  • Upload
    urban

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Modeling and simulation of diffusion MRI signal in biological tissue. Institut national de recherche en informatique et en automatique ( INRIA) Centre Saclay ( Equipe-projet DEFI ) Centre Nancy ( Equipe-projet TOSCA) Coordinateur : Jing-Rebecca Li - PowerPoint PPT Presentation

Citation preview

Page 1: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

1

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Modeling and simulation of diffusion MRI signal in biological tissue

Institut national de recherche en informatique et en automatique (INRIA)

Centre Saclay (Equipe-projet DEFI )Centre Nancy (Equipe-projet TOSCA)

Coordinateur: Jing-Rebecca Li

Participants: Houssem Haddar, Armin Leichleiter, Antoine Lejay

PhD: Dang Van Nguyen

Commissariat à l'Énergie Atomique (CEA)

Neurospin

Coordinateur: Cyril Poupon

Participants: Denis LeBihan

PhD: Benoit Schmitt, Alice Lebois, Hang Tuan Nguyen

Page 2: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

2

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

• Modeling by PDEs Simulation of PDEs

• Probabilist processes Simulation by Monte-Carlo

• Inverse problems

• Simulation by Monte-Carlo

• MRI data acquisition

• Bio-physics

Page 3: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

3

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Magnetic resonance imaging

Contrast: (tissue structure)1. water magnetization (spin density) 2. relaxation (T1,T2,T2*) 3. water displacement (diffusion)in each voxel

1,5Tesla magnet (15000 Gauss)

MRI

One voxel = O(mm)

Page 4: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

4

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

b value

ln(s

igna

l)

Human visual cortex(Le Bihan et al. PNAS 2006).

Free diffusion:ln(S/S0) = -bD

• Diffusion MRI can measure displacement of water

• Displacement of water can tell us about cellular structure

• Understanding of biomechanics of cells, structure of brain

• Potential clinical value– Structure change in

diseases – cells swell

immediately after stroke.

• Functional studies

Diffusion MRI

Slope is ADC (apparent diffusion coefficient)

Page 5: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

5

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Apply magnetic fields

Page 6: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

6

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Page 7: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

7

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Page 8: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

8

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Page 9: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

9

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Page 10: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

10

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

b value

ln(s

igna

l)

Human visual cortex(Le Bihan et al. PNAS 2006).

Free diffusion:ln(S/S0) = -bD

Step 1. Simulation

Later: inverse problem

Slope is ADC (apparent diffusion coefficient)

Page 11: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

11

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

• Partial differential equation model “Bloch-Torrey PDE”

• Permeable membranes

• Simpler cellular geometry

• Easier theoretical analysis

• Monte-Carlo simulation of random walkers, representing concentrated mass of water molecules.

• Impermeable membranes for now.

• More flexible cellular geometry

Step 1. Simulation

Page 12: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

12

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

‘IC’

‘MEM’

‘EC’

‘IC’

‘MEM’=permeab coeff

‘EC’

Bloch-Torrey PDE2or 3 compartment diffusion model

IC, EC: Intra-, extracellular spaceMEM: membrane-bound layer

∂ M ( x⃗ , t , x⃗0)∂ t

=−i f (t ) γ g⃗⋅⃗x M ( x⃗ , t∣x⃗0)+ ∇⋅(D ∇ M ( x⃗ , t∣x⃗0)) ,

M ( x⃗ ,0∣x⃗0)=δ( x⃗− x⃗0)

Page 13: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

13

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000

b value

ln(s

igna

l)

FVforDMRI: written in Fortran90, C++ version in development10000 lines. Authors: Jing-Rebecca Li, Dang Van Nguyen

Simulation by FVforDMRI of Diffusion MRI signals in complicated cellular environment

Page 14: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

14

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Simulation by FVforDMRI ADC as a function of cell density

Page 15: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

15

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

C++ version in development Authors: Jing-Rebecca Li, Dang Van Nguyen

Page 16: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

16

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Benoit will speak about the Monte-Carlo code at the end

Planned work:

Antoine Lejay and Jing-Rebecca Li will define the interface condition to mimic permeability membranes to add to the Monte-Carlo code. Also add Green’s function analytical solution for random walkers when they are far from any interfaces.

Page 17: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

17

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

∂𝛹𝑒(𝑞Ԧ,𝑡)∂𝑡 = −𝑐(𝑡)𝐷𝑒 ∥ 𝑞Ԧ∥2 𝛹𝑒(𝑞Ԧ,𝑡) − 1𝜏𝑒𝛹𝑒(𝑞Ԧ,𝑡) + 1𝜏𝑖 𝛹𝑖(𝑞Ԧ,𝑡)∂𝛹𝑖(𝑞Ԧ,𝑡)∂𝑡 = −𝑐(𝑡)𝐷𝑖 ∥ 𝑞Ԧ∥2 𝛹𝑖(𝑞Ԧ,𝑡) − 1𝜏𝑖 𝛹𝑖(𝑞Ԧ,𝑡) + 1𝜏𝑒𝛹𝑒(𝑞Ԧ,𝑡) 1

Step 2: Inverse problem. • Find reduced (ODE model), improved from

existing model (Karger model)

Page 18: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

18

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Step 2: Inverse problem

• Solved inverse problem for average cell size, improved over Karger model.

• Numerically verified for simple geometry

Page 19: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

19

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Step 3: Experimental verification (began Jan 2012)

• Imaging rat brains on the 17T Brucker small animal system at Neurospin.

• Preliminary experimental data have been obtained.

• Histology on the tissue samples is planned so as to provide the necessary geometrical parameters to input into the two codes.

• Reduced (ODE) model will be use to estimate average cell size.

Page 20: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

20

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Step 3: Experimental verificationImaging rat brain

17T Brucker small animal system Imaging bed for rat

Page 21: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

21

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Step 3: Experimental verification

DMRI signal

Imaged 6 rats

Page 22: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

22

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Step 3: Experimental verification• Tumor model in rat

Imaging tumor in rat brain

Page 23: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

23

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

1. Tache 1: The numerical method based on PDEs. It is written in Fortran90 and contains about 10000 lines. Completed.

2. Tache 1.1: Ph.D. student Dang Van Nguygen (funded by ANR) is implementing a C++. Ongoing.

3. Tache 2: New reduced ODE model can estimate cell size. Completed. Theory completed. Experimental verification ongoing.

4. Tache 3: Monte Carlo Brownian dynamics simulator capable of simulating diffusion of spins in arbitrarily complex geometries with a diffusion weighted signal integrator emulating various MR pulse sequences. Implemented in C++ on a high computing PC cluster for large-scale simulations. It contains 17000 lines of C++ code and 4000 lines of python code. Completed.

Work program

Page 24: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

24

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Tache 4: Imaging rat brains on the 17T Brucker small animal system at Neurospin. Preliminary experimental data have been obtained. Histology on the tissue samples is planned so as to provide the necessary geometrical parameters to input into the two codes. We plan to verify the simulation results of both the PDE method (‘FVforDMRI’) and the Monte-Carlo method (‘Microscopist’) against the experimental data obtained in rat brain on the 17T imaging system. Ongoing.

Tache 5: The Green’s function formalism gives an interface condition that must be satisfied on the cellular membranes by any Monte-Carlo simulation so that the simulation results can be compared in a meaningful way with the PDE simulation results. This interface condition will be implemented in the Monte-Carlo code. We plan also to begin accelerate the Monte-Carlo code by incorporating known Green’s function solutions in parts of the computational domain that are homogeneous. Planned.

Tache 6 : We have begun to evaluate different ways of acquiring sample brain geometries using electron microscopy in order to extract more realistic membrane geometries to be used as input to ‘Microscopist’. Ongoing.

Work program

Page 25: Modeling  and simulation  of diffusion MRI signal  in  biological tissue

25

SIMUDMRI

ANR Cosinus 2010 Revue mars 2012

Joint (journal) publicationsLi J.-R., Nguyen T.Q., Haddar H., Grebenkov D., Poupon C., Le Bihan D., Numerical and analytical models of the long time apparent diffusion tensor, preprint

Li J.-R., Nguyen H.T., Grebenkov, D., Poupon C., Le Bihan D., General ODE model of diffusion MRI signal attenuation, preprint

Li J.-R., Calhoun D., Poupon C., Le Bihan D., Efficient numerical method to solve the multiple compartment Bloch-Torrey equation, preprint

Yeh CH, Le Bihan D., Li J.-R., Mangin J.-F., Lin C.-P., Poupon C., Monte-Carlo simulation software dedicated to diffusion-weighted MR experiments in neural media. (Submitted to NeuroImage)

Yeh CH, Kezele I., Schmitt B., Li J.-R., Le Bihan D., Lin C.-P., Poupon C., Evaluation of fiber radius mapping using diffusion MRI under clinical system constraints. (Submitted to Magnetic Resonance Imaging)