11
CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 SCIENCES INDUSTRIELLES DE L'INGENIEUR 1 CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES B1 Identifier et caractériser les grandeurs physiques Flux de matière Qualifier la nature des matières, quantifier les volumes et les masses B2 Proposer un modèle de connaissance et de comportement Actions mécaniques : - modélisation locale, actions à distance et de contact - modélisation globale, torseur associé Associer un modèle à une action mécanique Déterminer la relation entre le modèle local et le modèle global Liaisons : - torseur des actions mécaniques transmissibles dans les liaisons normalisées - associations de liaisons en série et en parallèle Associer le paramétrage au modèle retenu Associer à chaque liaison son torseur d’actions mécaniques transmissibles On supposera comme dans les chapitres précédents que les solides sont géométriquement parfaits et indéformables. On constate que les ensembles matériels se déplacent et se déforment. On associe le terme général de « force » aux causes de ces phénomènes. Pour pouvoir mettre en équations les phénomènes physiques qui nous préoccupent, on va associer un modèle mathématique à ce concept de force ou plutôt d’action mécanique. I. MISE EN EVIDENCE. Tout système est en permanence soumis à des actions. Exemple de la pince Schrader : L’action du poignet sur la pince, l’action de la pièce sur la pince… On appelle ces Actions : Actions Mécaniques. Définition d’une AM. On appelle Action Mécanique (notée AM) toute cause capable : - de maintenir un corps au repos, - de créer ou modifier un mouvement, - de déformer un corps. O Modèle global Modèle local Robot Shrader Pince Shrader seule

MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

Embed Size (px)

Citation preview

Page 1: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 1

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES B1 Identifier et caractériser les grandeurs physiques

Flux de matière Qualifier la nature des matières, quantifier les volumes et les masses

B2 Proposer un modèle de connaissance et de comportement

Actions mécaniques : - modélisation locale, actions à distance et de contact - modélisation globale, torseur associé

Associer un modèle à une action mécanique Déterminer la relation entre le modèle local et le modèle global

Liaisons : - torseur des actions mécaniques transmissibles dans les liaisons normalisées - associations de liaisons en série et en parallèle

Associer le paramétrage au modèle retenu Associer à chaque liaison son torseur d’actions mécaniques transmissibles

On supposera comme dans les chapitres précédents que les solides sont géométriquement parfaits et indéformables. On constate que les ensembles matériels se déplacent et se déforment. On associe le terme général de « force » aux causes de ces phénomènes. Pour pouvoir mettre en équations les phénomènes physiques qui nous préoccupent, on va associer un modèle mathématique à ce concept de force ou plutôt d’action mécanique.

I. MISE EN EVIDENCE. Tout système est en permanence soumis à des actions. Exemple de la pince Schrader : L’action du poignet sur la pince, l’action de la pièce sur la pince… On appelle ces Actions : Actions Mécaniques. Définition d’une AM. On appelle Action Mécanique (notée AM) toute cause capable :

- de maintenir un corps au repos, - de créer ou modifier un mouvement, - de déformer un corps.

O

Modèle global Modèle local

Robot Shrader

Pince Shrader seule

Page 2: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 2

II. MODELISATION LOCALE 1. LES ACTIONS MECANIQUES A DISTANCE (QUI AGISSENT SUR LE

VOLUME). Chaque élément de volume de l’ensemble matériel subit une action mécanique élémentaire. (action volumique) dVQQdf ).()( ϕ

!=

Exemples : Attraction terrestre (action de la pesanteur). Champ magnétique d’un aimant (action magnétique)…

2. LES ACTIONS MECANIQUES DE CONTACT (QUI AGISSENT SUR LA SURFACE)

Elles s’appliquent directement sur la surface frontière des ensembles matériels en contact (action ponctuelle ou surfacique). dSQQdf ).()( λ

!=

Exemples : Entre deux solides (action de liaison). Entre un solide et un fluide (action de pression)…

3. MODELE LOCAL D’UNE ACTION MECANIQUE Principe de ce modèle : Représenter localement toutes les actions mécaniques élémentaires en tout point Q où elles agissent : c'est-à-dire sur un volume élémentaire dv ou une surface élémentaire ds. Objectif de ce modèle : Etudier des pressions de contact, et des déformations de solides (notions qui sortent du cadre de votre programme) Modélisation par un champ de vecteurs )(Qdf :

Exemple de l’action mécanique élémentaire de contact de la pièce sur le doigt de la pince : Cette action mécanique élémentaire est modélisée en son point d’application Q par un

vecteur lié )(Qdf doigtpièce→ dont les

caractéristiques sont : • un point d'application Q, • une direction, • un sens, • une intensité dont l’unité

est le NEWTON (N).

Q O

Page 3: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 3

III. MODELE GLOBAL : TORSEUR D’EFFORT ASSOCIE Principe de ce modèle : Représenter globalement les actions mécaniques (dans le cas de solides indéformables). Objectif de ce modèle : Etudier l'équilibre ou le mouvement (avec actions mécaniques) de solides indéformables. Cette représentation fait disparaître l’effet local, mais est très efficace pour appliquer les lois de la Mécanique : Principes fondamentaux de la Statique (PFS) ou de la Dynamique (PFD). Modélisation par un torseur (résultante + moment) :

1èreétape:Notionderésultante: ∫ →→ =D

doigtpiècedoigtpièce QdfR )(

Exemple de l’action mécanique de contact de la pièce sur le doigt de la pince :

Cette action mécanique est modélisée en un point particulier A par un vecteur lié doigtpièceR →

(appelée résultante) dont les caractéristiques sont :

• un point d'application A, • une direction, • un sens, • une intensité dont l’unité

est le NEWTON (N).

∫ →→ =D

doigtpiècedoigtpièce QdfR )( ( doigtpièceR → est la somme de tous les petits )(Qdf doigtpièce→ )

où D est le domaine sur lequel s’exercent les actions mécaniques élémentaires (une surface ou un volume).

2èmeétape:Notiondemomentrésultant: ∫ →→ ∧=D

doigtpiècedoigtpièceO QdfOQM )(, .

La modélisation de l’action mécanique par une résultante en un point particulier est : • suffisante pour un point appartenant au support de l’action, puisqu’elle prend en

compte l’action de tirer ou pousser. • insuffisante pour un point n’appartenant pas au support de l’action, puisqu’elle

ne prend pas en compte l’action de tordre. En effet si on s’intéresse à l’effet de l’action mécanique précédente au point O, celle-ci a tendance à :

- pousser le doigt dans une direction verticale parallèle à doigtpièceR → .

- tordre le doigt autour de l’axe z.

A O

Page 4: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 4

Par conséquent, nous modéliserons l’action mécanique de la pièce→doigt en O :

ü par une résultante doigtpièceR → qui a tendance

à pousser dans une direction (résultante inchangée par rapport à celle modélisée en A)

ü et par un 2ème vecteur lié (appelée moment et notée

doigtpièce,OM → qui a tendance à tordre autour

d’un axe et dont les caractéristiques sont : • un point d'application, • une direction, • un sens, • une intensité dont l’unité est le NEWTON MÈTRE (N.m).

∫ →→ =D

doigtpiècedoigtpièce QdfR )( et ∫ →→ ∧=D

doigtpiècedoigtpièceO QdfOQM )(,

où D est le domaine sur lequel s’exercent les actions mécaniques élémentaires (une surface ou un volume).

Bilan:Torseurdel’actionmécaniqueglobale.Lorsque l’on s’intéresse, pour une résultante, à un point différent d’un des points de son support, on dit que la résultante induit un moment par rapport à ce point. Ainsi, pour traduire avec précision les effets d’une action mécanique en n’importe quel point d’un solide, il faut caractériser cette action mécanique par une Résultante et un Moment (ceux-ci pouvant être nul). C’est pourquoi, nous utiliserons l’outil mathématique qui permet de regrouper ces 2 informations : le torseur. Définition du torseur d’action mécanique : Le torseur d’action mécanique est défini en un point donné par ces« deux éléments de réduction » :

• une résultante R indépendante du point d'expression du torseur. • un moment M

fonction du point choisi.

Rappel :

BARMM BA ∧+= →→→ 2121,21,

Remarque:Calculdumomentd’unglisseurparlaméthodedu«brasdelevier».

2121,21, →→→ ∧+= ROAMM AO

).().?.( 2121, yRyxdMO →→ −∧+=

d

Y X

O A

d

Y X

O

A

{ }⎪⎭

⎪⎬

⎪⎩

⎪⎨

∧=⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=∫

→→

D

D

O

OOQdfOQ

Qdf

MR

)(

)(

21

21

21,

2121T

Page 5: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 5

zRdMO .. 2121, →→ −=

2121, . →→ = RdMO

d est appelé bras de levier (distance entre le point O et le support de la résultante au point A).

IV. ACTION MECANIQUE A DISTANCE : CAS DE LA PESANTEUR.

1. HYPOTHESE DU SOLIDE HOMOGENE : cste)Q( =ρ=ρ . ∈∀Q solide, la masse volumique reste constante : cste)Q( =ρ=ρ

(Hypothèse qui n’est pas valable pour du béton par exemple)

2. MODELE LOCAL : dvgQQdf pes .).()(1 ρ=→ .

Soit un solide 1, de volume V, placé dans le champ de pesanteur g tel que

z.gg −= (Par défaut, on prend : 2s.m81,9g −= ).

Le champ de la pesanteur est orienté suivant la verticale descendante. Il produit en tout point Q du solide 1 une action mécanique élémentaire

)(1 Qdf pes→ proportionnelle au volume élémentaire dv entourant Q :

dvgdvgQQdf pes ...).()(1 ρρ ==→ (car solide homogène)

3. MODELE GLOBAL.

NOTIONDEPOIDS: g.mR 1pes =→ .

Selon la définition d’une résultante : gmVgdvgdvgQdfRvolumevolumevolume

pespes .......)(11 ==⎟⎟⎠

⎞⎜⎜⎝

⎛=== ∫∫∫ →→ ρρρ

NOTIONDECENTREDEGRAVITE: ∫=volume

dv.OQOG.V .

Selon la définition d’un moment :

( ) g.dv.OQdv.g.OQ)Q(dFOQMvolumevolumevolume

1pes1pes,O ρ∧⎟⎟

⎜⎜

⎛=ρ∧=∧= ∫∫∫ →→

Pour simplifier l’expression de ce moment, on choisit de l’exprimer non au point O mais en un point

G, tel que 0dv.GQvolume

=∫ . Ainsi en ce point G, 0g.dv.GQMvolume

1pes,G =ρ∧⎟⎟

⎜⎜

⎛= ∫→ .

Le point G peut être également définit en faisant intervenir le point O, origine du repère :

)Q(dF 1pes→

z

Q dv 1

Page 6: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 6

∫∫∫∫∫ +=+=+==volumevolumevolumevolumevolume

dv.OQGO.Vdv.OQdv.GOdv).OQGO(dv.GQ0 ⇒

∫=volume

dv.OQOG.V

Le point G ainsi défini, appelé centre de gravité, est le barycentre des points Q chacun pondéré du facteur dv. Action de la pesanteur

Expression globale : { }⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

=→ 0g.m

G1pesT . Le torseur de la pesanteur est donc un torseur glisseur dont

l’expression la plus simple est obtenue en G. L’axe central du torseur passe par le centre de gravité et est vertical.

NB : Pour les solides dont une dimension est négligeable (plaque) ou pour les solides unidimensionnels (fil), le domaine d’intégration est une surface (S) ou une ligne (L).

V. LOIS DE COULOMB 1. NOTION D’ADHERENCE ET FROTTEMENT.

1/ Le frottement ou l’adhérence sont des phénomènes qui tendent à s’opposer au mouvement ou, à la tendance au mouvement relatif de 2 pièces en contact.

2/ S’il existe un mouvement relatif entre les 2 pièces en contact, on dit qu’il y a frottement.

3/ S’il existe une tendance au mouvement relatif entre les 2 pièces en contact (mais sans mouvement…), on dit qu’il y a adhérence.

4/ L’équilibre strict se situe juste avant le mouvement (il n’y a pas encore de mouvement).

2. MODELISATION DES ACTIONS MECANIQUES DE CONTACT SURFACIQUE.

Modèlelocal:LoisdeCoulomb.Soient deux solides S1 et S2 en contact sur une surface S. L’action mécanique élémentaire )Q(dF 21→ de S1 sur S2 au point Q se projette sur la normale et dans

le plan tangent commun à S1 et S2 en Q telle que : )Q(dT)Q(dN)Q(dF 212121 →→→ += où )Q(dN 21→ caractérise la répartition d’action normale (pression de contact) ds).Q(p)Q(dN 21 =→

)Q(dT 21→ caractérise la répartition d’action tangentielle (adhérence ou frottement)

)Q(dN.)Q(dT 21itelima21 →→ µ≤

Page 7: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 7

Casdel’adhérence(équilibrestable)

Casdel’adhérencelimite(équilibrestrictouinstable)

Casdufrottement(glissement)

Vitesse de glissement 0V 1/2Q =∈ Vitesse de glissement 0V 1/2Q =∈ Vitesse de glissement 0V 1/2Q ≠∈

Π(Q) ds

Q

S1

S2

)Q(dT 21→

)Q(dN 21→ )Q(dF 21→

ϕa limite

Cône d’adhérence

ϕa

Π(Q) ds

Q

S1

S2

)Q(dT 21→

)Q(dN 21→ )Q(dF 21→

Cône d’adhérence

ϕa limite

Π(Q) ds

Q

S1

S2

)Q(dT 21→

)Q(dN 21→ )Q(dF 21→

Cône de frottement

ϕ f

1/2QV ∈

aϕ (angle d’adhérence) itelimaϕ (angle d’adhérence limite) fϕ (angle de frottement)

)Q(dN.)Q(dT 21itelima21 →→ µ<

avec coef d’adhérence itelimaitelima tanϕ=µ

)Q(dN.)Q(dT 21itelima21 →→ µ=

avec coef d’adhérence itelimaitelima tanϕ=µ

)Q(dN.)Q(dT 21f21 →→ µ=

avec coef de frottement ff tanϕ=µ

L’action mécanique élémentaire )Q(dF 21→ se situe

DANS le cône d’adhérence (de sommet Q et de demi-angle au sommet itelimaϕ )

L’action mécanique élémentaire )Q(dF 21→ se situe

SUR le cône d’adhérence (de sommet Q et de demi-angle au sommet itelimaϕ )

L’action mécanique élémentaire )Q(dF 21→ se situe

SUR le cône de frottement (de sommet Q et de demi-angle au sommet fϕ )

L’action tangentielle d’adhérence )Q(dT 21→ s’oppose à la tendance

au glissement de 2/1. La direction de )Q(dT 21→ est donc indéterminée puisque l’on ne connaît pas la tendance au glissement de 2/1

L’action tangentielle d’adhérence )Q(dT 21→ s’oppose à la tendance

au glissement de 2/1. La direction de )Q(dT 21→ est donc indéterminée puisque l’on ne connaît pas la tendance au glissement de 2/1

L’action tangentielle de frottement )Q(dT 21→ s’oppose au glissement

de 2/1 : 0)Q(dTV 211/2Q =∧ →∈ (colinéaire)

0)Q(dTV 211/2Q <• →∈ (de sens opposé)

Page 8: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 8

NB : Le coefficient d’adhérence est toujours supérieur au coefficient de frottement (

fitelima µ>µ ). Mais étant donné le grand nombre de paramètres qui interviennent dans leur

détermination, on considère souvent, par mesure de simplification, que ces deux coefficients sont égaux et nommés µ ou f .

Récapitulatifsurl’évolutiondesactionstangentiellesd’adhérenceTaetdefrottementTf.L’action tangentielle de frottement Tf est à l’origine des pertes d’énergie par frottement. Si l’objet est arrêté il faudra, pour le remettre en mouvement, fournir une action F > µa limite.N. Les différentes phases sont résumées sur le graphique :

Coefficientsd’adhérenceetdefrottement:µ.µa limite et µf ne dépendent :

§ ni de l’intensité des actions exercées, § ni de l’étendue des surfaces en contact.

Ils dépendent essentiellement :

§ de la nature du couple de matériaux en contact, § de la rugosité des surfaces en contact, § de la lubrification (sec ou lubrifié), § de la température au niveau des surfaces en contact qui peut favoriser des microsoudures ou la rupture du film d’huile si le contact est lubrifié,

§ de la vitesse de glissement… Toutefois, en première approximation, on considère que le paramètre prépondérant concerne uniquement la nature du couple de matériaux en contact.

Adhérence Frottement

µa limite = tan ϕa limite µf = tan ϕf Matériaux en

contact A sec Lubrifié A sec Lubrifié

Acier sur acier 0,18 0,12 0,15 0,09 Acier sur fonte 0,19 0,10 0,16 0,08 à 0,04

Acier sur bronze 0,11 0,10 0,10 0,09 Téflon sur acier 0,04 0,04 Fonte sur bronze 0,10 0,20 0,08 à 0,04 Nylon sur acier 0,35 0,12 Bois sur bois 0,65 0,20 0,40 à 0,20 0,16 à 0,04

Métaux sur bois 0,60 à 0,50 0,10 0,50 à 0,20 0,08 à 0,02 Métal sur glace 0,02

Pneu voiture sur route 0,80 0,60

0,30 à 0,10 sur sol mouillé

Page 9: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 9

VI. ACTION MECANIQUE TRANSMISSIBLE PAR UNE LIAISON PARFAITE.

1. OBJECTIF. Nous allons nous intéresser aux possibilités de transmission d’actions entre les pièces constituant une liaison parfaite (compte tenu de la géométrie des surfaces de contact).

2. RAPPEL SUR LES LIAISONS PARFAITES. Une liaison parfaite est définie par :

• des surfaces de contact géométriquement parfaites, • des jeux de fonctionnement nuls entre les surfaces de contact, • un contact entre surfaces supposé sans adhérence.

3. DUALITE TORSEUR CINEMATIQUE / TORSEUR DE L’ACTION MECANIQUE TRANSMISSIBLE PAR UNE LIAISON PARFAITE.

ÉTUDEDEL’ACTIONMECANIQUETRANSMISSIBLEPARUNEGLISSIERE.Soit la liaison glissière de direction x supposée parfaite entre les pièces 1 et 2 : Quels sont les mouvements élémentaires possibles ? Translation suivant la direction x . Peut-on transmettre une action de 1 sur 2 suivant ce degré de liberté ? Non. En revanche peut-on transmettre une action de 1 sur 2 suivant les 5 degrés de liaison ? Oui, les composantes de la résultante Y, Z et les composantes du moment L, M et N sont transmises d’une pièce à l’autre. Ainsi il existe une dualité entre le torseur cinématique et le torseur de l’action mécanique transmissible par la liaison glissière :

Forme générale du Torseur cinématique

Forme générale

du Torseur de l’action mécanique transmissible

{ },...,...)x(

1/2P,x

P

1/200

v

000

!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=∈

V

{ })z,y,x(12,O

12,O

12,O

12

12

O

12NML

ZY0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→→T

Généralisons.

Lorsqu’un degré de liberté est supprimé entre 2 solides 1 et 2, il en résulte alors une composante dans le torseur de l’action mécanique transmissible de 1→2 (qui empêche le mouvement).

Page 10: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 10

A. TABLEAU GENERAL DES TORSEURS CINEMATIQUE ET DE L’ACTION MECANIQUE TRANSMISSIBLE PAR UNE LIAISON PARFAITE. Parmi toutes les liaisons envisageables, la norme NF EN ISO 3952-1 (mai 95) a retenu les plus courantes.

Nom

Représentation Spatiale

Représentation plane

Forme générale du Torseur cinématique

Forme générale du Torseur de l’action

mécanique transmissible

Complèteouencastrement

La forme de ces 2 torseurs reste identique pour tout point A de l’espace. Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ }..)(...,...,.P

1/2000

000

⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

V { })z,y,x(12,A

12,A

12,A

12

12

12

A

12NML

ZYX

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→T

Glissièrededirection x

!

La forme de ces 2 torseurs reste identique pour tout point A de l’espace. Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ },...,...)x(

1/2P,x

P

1/200

v

000

!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=∈

V { })z,y,x(12,A

12,A

12,A

12

12

A

12NML

ZY0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→→T

Appuiplandenormale y

!

La forme de ces 2 torseurs reste identique pour tout point A de l’espace. Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ })z,y,x(1/2P,z

1/2P,x

1/2,y

)y,A(P

1/2v0

v

0

0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω=

∈∀

V

{ })z,y,x(12,P

12,P

12

)y,A(P

12N0

L

0Y0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

∈∀

→T

Linéairerectilignede

lignedecontact( )x,O ! etdenormale y

!

(ou alors cylindre-plan de ligne de

contact ( )x,O ! et de

normale y!

)

La forme de ces 2 torseurs reste identique pour tout point A du plan )y,x,O( . Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ })z,y,x(1/2A,z

1/2A,x

1/2,y

1/2,x

A

1/2v

0v

0 !!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω

ω

=

V { })z,y,x(12,P

12

)y,A(P

12N00

0Y0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

∈∀

→T

PonctuelledepointdecontactOetdenormale

y!

(ou alors sphère-plan de point de contact O et de

normale y!

)

La forme de ces 2 torseurs reste identique pour tout point A de la normale

)y,O( .

Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ })z,y,x(1/2A,z

1/2A,x

1/2,z

1/2,y

1/2,x

A

1/2v

0v

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω

ω

ω

=

V { },...)y(...,

12

)y,O(P

12000

0Y0

!⎪⎭

⎪⎬

⎪⎩

⎪⎨

= →

∈∀

→T

O

Page 11: MODELISER LES ACTIONS MECANIQUES ENTRE … · 2016-04-01 · CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016 ... d’actions mécaniques transmissibles

CI 6 MODELISER LES ACTIONS MECANIQUES ENTRE SOLIDES INDEFORMABLES 2015-2016

SCIENCES INDUSTRIELLES DE L'INGENIEUR 11

Pivotd’axe( )x,O !

ou

La forme de ces 2 torseurs reste identique pour tout point A de l’axe )x,O( .

Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ },...,...)x(

1/2,x

)x,O(P

1/2000

00

!! ⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎧ω

=

∈∀

V { })z,y,x(12,A

12,A

12

12

12

A

12NM0

ZYX

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→T

Pivotglissantd’axe ( )x,O !

ou

La forme de ces 2 torseurs reste identique pour tout point A de l’axe )x,O( . Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ },...,...)x(

1/2P,x1/2,x

)x,O(P

1/200

v

00

!! ⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎧ω

=∈

∈∀

V

{ })z,y,x(12,A

12,A

12

12

A

12NM0

ZY0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→→T

Hélicoïdaled’axe ( )x,O ! etdepasp

ou

ou

La forme de ces 2 torseurs reste identique pour tout point A de l’axe )x,O( . Mais attention, les valeurs de leurs composantes ne sont pas forcément égales…

{ }

,...,...)x(

1/2,x1/2,x

)x,O(P

1/200

2p.

00

!! ⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎧π

ω±ω

=

∈∀

V

Car

πω±=⇒

πθ±=⇒

⎭⎬⎫

→θ

±→π

2p.v

2p.x

)mm(x)rad()mm(p)rad(2

xx

{ })z,y,x(

12,A

12,A

12

12

12

12

A

12NM

2p.X

ZYX

!!!⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎧π

±

=

→T

0.L)2p..(Xgaucheàpas

0.L2p..Xdroiteàpas

.MV.R0P

1/2,x21,A1/2,x21

1/2,x21,A1/2,x21

1/221,A1/2A21int

=ω+π

ω−

=ω+π

ω

Ω+==

→→

→→

→∈→

Pas à droite π

ω+=2p.v xx

et π

−=2p.XL Pas à gauche

πω−=

2p.v xx

et π

+=2p.XL

Sphériqueàdoigtd’axes( )y,O ! et ( )z,O !

(ou alors sphérique à doigt de rotation interdite ( )x,O ! )

{ })z,y,x(1/2,z

1/2,y

O

1/20000

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω

ω=V { })z,y,x(

12,O

12

12

12

O

1200

L

ZYX

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=→

→T

RotuledecentreO

{ })z,y,x(1/2,z

1/2,y

1/2,x

O

1/2000

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω

ω

ω

=V { })z,y,x(12

12

12

O

12000

ZYX

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→T

LinéaireannulairedecentreOetdedirection x

!

ou alors sphère-

cylindre de centre O et de direction x!

{ })z,y,x(

1/2O,x

1/2,z

1/2,y

1/2,x

O

1/200

v

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

ω

ω

ω

=∈

V { })z,y,x(12

12

O

12000

ZY0

!!!⎪⎭

⎪⎬

⎪⎩

⎪⎨

=

→→T