Neural signatures of neurological recovering from coma

  • Published on

  • View

  • Download


  • 20 rgions prslectionns correspondant des faisceaux de matire blanche.Un modle pronostique intgrant une DTI avec les variables cliniques etradiographiques du score International Mission for Prognosis and Analysis of

    E-mail address:

    Keywords: Brain injury; Prognosis; Imagery; DTI

    Interface INSERM (IV) / Revue dEpidemiologie et de Sante Publique 55S (2012) e154e155 e155Clinical Trials (IMPACT) score a t construit. Les patients ont t valus unan avec une chelle modifie de Glasgow (GOS).Resultats. Parmi les 102 patients tudis, le GOS un an tait dfavorable dans39 cas et favorable dans 63 cas. Le DTI a rvl des lsions multifocales de lasubstance blanche, dont la svrit a t associe au pronostic. Pour laprdiction du pronostics dfavorables, laire sous la courbe (ROC) tait de0,89 pour le score DTI-IMPACT et de 0,64 pour le score IMPACT seul(p < 0,001). Le score DTI-IMPACT a une sensibilit de 74 % et une spcificitde 95 % pour la prdiction dun pronostic dfavorable.Conclusions. Les lsions multifocales de la substance blanche sont trsrpandues chez les patients atteints de troubles de la conscience aprs untraumatisme crnien. Lvaluation quantitative de la substance blanche avec leDTI augmente la prcision de la prdiction des rsultats long terme dutraumatisme crnien par rapport au score pronostique existant.

    English version


    Which consciousness in coma?A. Vanhaudenhuyse

    Coma Science Group, CR Cyclotron, universite de Lie`ge, CHU de Lie`ge,

    Sart Tilman, 4000 Lie`ge, BelgiumE-mail address:

    Several states indicate a loss of consciousness: coma, anesthesia, sleep. Thestudy of the vegetative state, recently renamed as unresponsive wakefulnesssyndrome, an awakening state without signs of consciousness, emphasizes howthe knowledge of consciousness is uncertain, as well as how there is an urgentneed to explore it.The goal of our team is to increase the knowledge of residual brain function inpatients who survive a traumatic or severe hypoxic-ischemic brain damage butremain in a coma, vegetative state, minimally conscious state or locked -insyndrome. Indeed, these patients still cause diagnosis, prognosis andtherapeutic challenges. Moreover, the study of such patients is also likely toimprove our understanding of human consciousness. The increasing use offunctional neuroimaging (positron emission tomography, high-density electro-encephalography and structural and functional magnetic resonance imaging)allows us to better understand the brain lesions of disorders of consciousnesspatients and better assess the residual functioning of these patients.

    Further readingBruno, et al. From unresponsive wakefulness to minimally conscious PLUS andfunctional locked-in syndromes: recent advances in our understanding ofdisorders of consciousness. J Neurol 2011;258(7):137384.Laureys S, Schiff ND. Coma and consciousness: paradigms (re)framed byneuroimaging. Neuroimage 2011;27 [Epub ahead of print].Demertzi, et al. Attitudes towards end-of-life issues in disorders of conscious-ness: a European survey. J Neurol 2011;258(6):105865.


    Neural signatures of neurological recovering from comaS. Silva

    Inserm U825, service de reanimation polyvalente, CHU Purpan,

    Wolfson Brain Imaging Center, 1, place Baylac, 31059 Toulouse, FranceE-mail address: Existing methods to predict recovery following severe traumaticbrain injury (TBI) lack accuracy. This study determines the value of quantitativediffusion tensor imaging (DTI) to predict functional outcome 1 year after severeTBI.Methods. In a multicenter study, we prospectively enrolled 102 patientswho remained comatose at least 7 days after TBI. Patients underwent brainMRI, which included DTI analyzed in 20 pre-selected white matter tracts. Aprognostic model integrating DTI with clinical and radiographic variablesfrom the International Mission for Prognosis and Analysis of Clinical Trials(IMPACT) score was constructed. Patients were evaluated at 1 year with amodified Glasgow Outcome Scale (GOS).Results. Of the 102 patients studied, GOS at 1 year was unfavorable in 39 andfavorable in 63. DTI revealed multifocal white matter damage, the severity ofwhich was associated with outcome. For the prediction of unfavorable GOS, thearea under the receiver operating characteristic (ROC) curve was 0.89 for theDTI-IMPACT score as compared to 0.64 for the IMPACT score alone(P < 0.001). The DTI IMPACT score has a sensitivity of 74% and a specificityof 95% for the prediction of unfavorable outcome.Conclusions. Multifocal white matter damage is prevalent in patients withimpaired consciousness after TBI. White matter assessment with quantitativeDTI increases the accuracy of long-term outcome prediction when comparedwith the best available clinical/radiographic prognostic score. Consciousness; Wakefulness; Coma; Default-mode network;

    Event related potential; Brain plasticity

    The loss of consciousness during coma arises due to a range of very differentetiologies. Patients progress through different paths of recovery, depending onthe extent of plastic brain processes. Hence, when assessing a patient at aparticular point in time post-ictus it is difficult to make accurate judgmentsabout the nature of their cognitive processes based simply on behavior. A highrate of misdiagnosis has been prevalent, leading to troubling ethical issues forclinical medicine.The study of the functional and structural brain changes during the transitionfrom coma to awareness, aims to identify a set of specific patterns of brainactivity related to neurological recovery and then give to clinician new anduseful diagnosis/prognosis assessment tools. Otherwise, from a fundamentalpoint of view, only this dynamic approach might allow the characterizationof the brain structures essential to build consciousness.In the present review, we have attempted to bring together a broad rangeof findings in the scientific literature that sheds light on the dynamicinterplay between wakefulness and awareness on brain-injured patients. Wefirst outline our working hypothesis and main results issued from functionalneuroimaging (i.e. default-mode network). We then examine the electro-physiological experimental studies that have attempted the physiologicalsignature of this transition (i.e. resting state, neural processing of auditoryregularities). In a final section, we examine the relevance of thesesfindings in a patient level and propose potential future direction for clinicalresearch.


    Quantitative MRI in brain injured patientsL. Puybasset

    Service de neuro-reanimation chirurgicale Babinski, departement danesthe-

    sie-reanimation, universite Pierre-et-Marie-Curie, groupe hospitalier

    Pitie-Salpetrie`re, 47-83, boulevard de lHopital, Paris 6, 75013 Paris, France


View more >