1
'Physique et Chimie des Matériaux' – ED 397 – 2016 Proposition pour allocation de recherche, Thème (A,B,C,D,E): Unité de recherche (nom, label, équipe interne): Unité Mixte de Physique UMR-137 Adresse : 1 Avenue Augustin Fresnel, 91767 PALAISEAU Directeur de l’Unité : Frederic Nguyen Van Dau Etablissement de rattachement : CNRS Nom du directeur de thèse (HDR), téléphone et courriel : H. Jaffrès ; 01 69 41 58 70 ; [email protected] Nombre de thésards actuellement encadrés et années de fin de thèse: 0 Co-encadrant éventuel : P. Bortolotti, 01 69 41 58 38; [email protected] Titre de la thèse: Spin-current and spin-Hall effect for emission/detection in the THz regime Description du projet : THz detection technology represents today a potential solution for both imaging (security issues, defense applications as control in airports, people screening, IEDs detection…) and also remote sensing for real time detection and identification (weapons, explosive). In addition, prime importance in radio- astronomy, security, long-term atmospheric, remote sensing, planetary missions and earth observation. On the other-hand, the giant Magneto-Resistance (GMR) effect discovered by Albert Fert and his team at Orsay in 1988, kicked-off the field of spintronics with actual strong applications in devices (read- heads, MRAM magnetic memories) and potential future new functionalities. Whereas the heart of GMR and spin-current generation/manipulation, at this stage, relies on the focus of magnetic field detection at the nanometer scale for industrial application, its response in the THz regime remains quasi-unexplored. Owing to some very recent article published in high impact factor journal, we may anticipate a strong response sensitivity of GMR elements to frequency excitation in the THz range (detection) as well as its potential use as a broad-band source or THz emitter. In this PhD research program, we propose to investigate both by modeling and experimentally, the properties of GMR elements under THz excitation (spectroscopy and resistivity) as well as its fundamentals in term of spin-current profiles within the multilayers stacks. Complementary experiments and model analyses would also be very beneficial to the direct determination of some relevant issues and physical parameters of GMR, as spin-dependent momentum relaxation time, interface charge to spin-orbit conversion (Inverse Edelstein Effect) and spin-orbit assisted diffusion and transverse spin-current generated by spin-orbit of heavy materials (Au-W, Pt) responsible for dipole oscillation in the picosecond regime.

Physique et Chimie des Matériaux' ED 397 2016 … · 'Physique et Chimie des Matériaux' – ED 397 – 2016 Proposition pour allocation de recherche, Thème (A,B,C,D,E): Unité

Embed Size (px)

Citation preview

Page 1: Physique et Chimie des Matériaux' ED 397 2016 … · 'Physique et Chimie des Matériaux' – ED 397 – 2016 Proposition pour allocation de recherche, Thème (A,B,C,D,E): Unité

'Physique et Chimie des Matériaux' – ED 397 – 2016 Proposition pour allocation de recherche, Thème (A,B,C,D,E):

Unité de recherche (nom, label, équipe interne): Unité Mixte de Physique UMR-137

Adresse : 1 Avenue Augustin Fresnel, 91767 PALAISEAU

Directeur de l’Unité : Frederic Nguyen Van Dau

Etablissement de rattachement : CNRS

Nom du directeur de thèse (HDR), téléphone et courriel : H. Jaffrès ; 01 69 41 58 70 ;

[email protected]

Nombre de thésards actuellement encadrés et années de fin de thèse: 0

Co-encadrant éventuel : P. Bortolotti, 01 69 41 58 38; [email protected]

Titre de la thèse: Spin-current and spin-Hall effect for emission/detection in the THz regime

Description du projet :

THz detection technology represents today a potential solution for both imaging (security issues,

defense applications as control in airports, people screening, IEDs detection…) and also remote sensing

for real time detection and identification (weapons, explosive). In addition, prime importance in radio-

astronomy, security, long-term atmospheric, remote sensing, planetary missions and earth observation.

On the other-hand, the giant Magneto-Resistance (GMR) effect discovered by Albert Fert and his team

at Orsay in 1988, kicked-off the field of spintronics with actual strong applications in devices (read-

heads, MRAM magnetic memories) and potential future new functionalities. Whereas the heart of

GMR and spin-current generation/manipulation, at this stage, relies on the focus of magnetic field

detection at the nanometer scale for industrial application, its response in the THz regime remains

quasi-unexplored. Owing to some very recent article published in high impact factor journal, we may

anticipate a strong response sensitivity of GMR elements to frequency excitation in the THz range

(detection) as well as its potential use as a broad-band source or THz emitter.

In this PhD research program, we propose to investigate both by modeling and experimentally, the

properties of GMR elements under THz excitation (spectroscopy and resistivity) as well as its

fundamentals in term of spin-current profiles within the multilayers stacks. Complementary

experiments and model analyses would also be very beneficial to the direct determination of some

relevant issues and physical parameters of GMR, as spin-dependent momentum relaxation time,

interface charge to spin-orbit conversion (Inverse Edelstein Effect) and spin-orbit assisted diffusion and

transverse spin-current generated by spin-orbit of heavy materials (Au-W, Pt) responsible for dipole

oscillation in the picosecond regime.