14
TD corrige analogique numerique.doc Page 1 sur 14 TD Analogique /numérique Exercice 1 : Questions de cours à maîtriser totalement et impérativement(*) Partie 1 à QCM : Précisez si les affirmations suivantes pour les différentes situations sont vraies ou fausses : - Lorsqu’une personne parle devant un microphone, le signal qui en sort : a) contient toutes les fréquences du continu au MHz b) ne contient qu’une seule fréquence c) a une amplitude qui dépend du niveau sonore d) a une fréquence qui dépend du niveau sonore e) nécessite une bande passante de 50Hz à 15 kHz pour une reproduction Hi-fi f) se contente d’une bande passante de 300Hz à 3 kHz pour une reproduction correcte Réponse : c) et e) sont vraies le reste est faux. Lorsqu’une personne parle, le spectre associé au signal sonore est complexe et s’étend de 20 Hz à 20 000 Hz. L’amplitude est bien sûre indépendante de la fréquence. - Le circuit d’acquisition d’un signal analogique audio (de 20 Hz à 20 kHz) a la structure suivante : a) on peut échantillonner à une fréquence fe beaucoup plus grande que 20 kHz b) si on échantillonne à 44 kHz, on perdra un peu de qualité dans les aiguës c) il faut au minimum échantillonner à un peu plus que 20 kHz d) le bloqueur maintient le signal constant à l’entrée du CAN pendant les conversions e) le choix du nombre de bits N sera déterminant pour la qualité du système Réponse : d) et e) sont vraies. Le choix d’une fréquence d’échantillonnage élevée n’est pas judicieux car elle conduit à un traitement de nombreuses données ensuite. Il faut également bien se persuader que lorsque Shannon est vérifié alors le spectre du signal analogique est conservé et peut alors être « retrouvé » à la conversion numérique analogique sans perte. - Le circuit précédent est utilisé pour l’acquisition d’un signal dont le spectre va du continu à 5 kHz, la fréquence d’échantillonnage a été choisie à 12 kHz. a) le choix de la fréquence d’échantillonnage est correct b) l’information entre les échantillons est perdue, d’où dégradation de la qualité

TD Corrige Analogique Numerique

Embed Size (px)

Citation preview

Page 1: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 1 sur 14

TD Analogique /numérique

Exercice 1 : Questions de cours à maîtriser totalement et impérativement(*) Partie 1 à QCM : Précisez si les affirmations suivantes pour les différentes situations sont vraies ou fausses :

- Lorsqu’une personne parle devant un microphone, le signal qui en sort : a) contient toutes les fréquences du continu au MHz b) ne contient qu’une seule fréquence c) a une amplitude qui dépend du niveau sonore d) a une fréquence qui dépend du niveau sonore e) nécessite une bande passante de 50Hz à 15 kHz pour une reproduction Hi-fi f) se contente d’une bande passante de 300Hz à 3 kHz pour une reproduction correcte Réponse : c) et e) sont vraies le reste est faux. Lorsqu’une personne parle, le spectre associé au signal sonore est complexe et s’étend de 20 Hz à 20 000 Hz. L’amplitude est bien sûre indépendante de la fréquence.

- Le circuit d’acquisition d’un signal analogique audio (de 20 Hz à 20 kHz) a la structure suivante :

a) on peut échantillonner à une fréquence fe beaucoup plus grande que 20 kHz b) si on échantillonne à 44 kHz, on perdra un peu de qualité dans les aiguës c) il faut au minimum échantillonner à un peu plus que 20 kHz d) le bloqueur maintient le signal constant à l’entrée du CAN pendant les conversions e) le choix du nombre de bits N sera déterminant pour la qualité du système Réponse : d) et e) sont vraies. Le choix d’une fréquence d’échantillonnage élevée n’est pas judicieux car elle conduit à un traitement de nombreuses données ensuite. Il faut également bien se persuader que lorsque Shannon est vérifié alors le spectre du signal analogique est conservé et peut alors être « retrouvé » à la conversion numérique analogique sans perte.

- Le circuit précédent est utilisé pour l’acquisition d’un signal dont le spectre va du continu à 5 kHz, la fréquence d’échantillonnage a été choisie à 12 kHz.

a) le choix de la fréquence d’échantillonnage est correct b) l’information entre les échantillons est perdue, d’où dégradation de la qualité

Page 2: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 2 sur 14

c) le filtre passe-bas anti-repliement est placé après l’échantillonneur d) la fréquence de coupure de ce filtre doit être légèrement supérieure à 5 kHz e) la pente de ce filtre doit être la plus raide possible après la coupure Réponse : a), d) et e) sont correcte. Le filtre anti-repliement doit être placé avant échantillonnage. 4

- Un signal téléphonique est échantillonné à son arrivée au central téléphonique à fe = 8 kHz et converti en mots de 8 bits sous forme série :

a) le débit numérique correspondant est D = 16 kbits/s b) la bande passante de la voie téléphonique analogique est de 8 kHz c) à l’entrée du central, le signal analogique est filtré en-dessous de 4 kHz d) vue la qualité du microphone et de la ligne téléphonique, on n’a pas besoin de filtre à l’entrée du central e) la bande passante du signal numérique s’étend jusqu’à 64 kHz f) c’est seulement à cause du filtrage que la qualité n’est pas celle d’un CD audio Réponse : a) faux :le débit est de 64 kbit/s ;b) Faux, forcément inférieur à 4 kHz, c) Vrai, d) Faux, e) Faux :le signal échantillonné à un spectre périodisé infini f)il y a l’échantillonnage (44 kHz) et le nombre de bit (16 bits) qui sont déterminants Partie 2 : Répondre aux questions a) Représentez l’allure du spectre d’un signal sinusoïdal échantillonné après avoir démontré la formule conduisant à ce spectre (on verra l’échantillonnage comme la multiplication du signal utile par un peigne de Dirac) Mathématiquement, on peut décrire un signal échantillonné x*(t) par le produit suivant :

x*(t) = x(t).d(t) Où d(t) est une suite d’impulsions de période TE, de largeur t0 et d’amplitude unité et nulle en dehors de ces instants. Afin de faciliter notre étude on supposera d(t) comme pouvant être décrit par une série de pics de Dirac. Rappel : Un pic de Dirac )(tδ est une impulsion d’air unité centrée en zéro qui vaut zéro partout ailleurs et dont la largeur ε tend vers zéro. )(tδ

)(tδ t t t

)(tδ t

2ε−

Zoom 1/ε

On représente également un Dirac par :

Page 3: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 3 sur 14

Ainsi de manière à avoir une série d’impulsions non nulles (peigne de Dirac) aux instants kTE

on va définir d(t) tel que : ∑+∞=

=

−=k

kEkTttd

0)()( δ avec k entier :

d(t) t -6TE -5TE -4TE -3TE -2TE -TE 0 TE 2TE 3TE 4TE 5TE 6TE D’après Fourier cette fonction périodique et paire sera décomposable en une somme de cosinus. Ainsi d(t) s’écrit :

∑∞

=

+=1

)cos()(n

Enmoy tnAdtd ω où E

E Tπ

ω2

=

On a alors E

moy TpériodepériodeunesurAire

d 1==

)2

(sin2

)2

sin(4

)cos(14

)cos()(4

2/

0

2/

0

εωεω

εω

ωε

ω

ε

E

En

E

E

En

EE

n

T

EE

n

nc

TA

n

n

TA

dttnT

A

dttntdT

A E

=

=

=

=

Or sachant que 0→ε et que sinc(0)=1

∑∞=

=

+=n

nE

EE

tnTT

td1

)cos(21)( ω

On peut remarquer que le spectre d’un peigne de Dirac donne également une série de pics. Si on suppose que le signal a échantillonner est une sinusoïde définit telle que :

x(t)=Acos( t0ω )

Alors x*(t) s’écrit :

Page 4: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 4 sur 14

x*(t)=Acos( t0ω ) ∑∞=

=

+n

nE

EE

tnTT 1

))cos(21( ω relation 1

Une analyse graphique nous conduit à : d(t) x*(t) t x(t) t t

Figure 6 On voit bien que la représentation temporelle de x*(t) conduit à une fonction discrète qui est différente de x(t), il est donc tout à fait logique d’obtenir un spectre de x*(t) qui soit différent de x(t) et c’est en effet ce que nous pouvons constater à l’aide de la relation 1 : A l’aide des formules trigonométriques, on obtient les différentes composantes spectrales : x(f) x*(f) A A/TE f f f0 f0 fE –f0 fE+f0 2fE-f0 2fE+f0 f b) Un ingénieur du son échantillonne à 44 kHz le signal sonore suivant:

- la partie musicale de 20 à 20000 Hz - d’un bruit électrique de densité spectrale constante dans la bande 0 à 40000 Hz - d’un signal parasite à 35kHz

Que constatez-vous dans la bande audio ? Justifiez à l’aide d’un graphique Spectre du signal échantillonné

0 20 9k 20k 24k 35k 40k 44k 64k 79k84k f

Lors de la conversion numérique analogique nécessaire pour alimenter le HP, il restera une composante à 9 kHz et un bruit deux fois plus important !!!

Page 5: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 5 sur 14

c) Donnez le principe d’un filtre anti-repliement. Dans l’exemple précédent si on conserve cette fréquence d’échantillonnage, quelle est la valeur de la fréquence de coupure de ce filtre. Un filtre anti-repliement permet de limiter le spectre d’un signal à numériser afin de respecter Shanonn et donc un recouvrement des spectres. Dans l’exemple précédent, le filtre anti-repliement fixé à 22 kHz évite le phénomène de repliement du spectre de la composante à 35 kHz (qui donne naissance à l’harmonique 9 kHz) et évite de doubler le niveau du bruit. d) Etablir la transmittance d’un bloquer d’ordre zéro. Considérons l’échantillonnage d’une impulsion très brève (un seul échantillon possible) x(t) d’amplitude unité : x(t) x*(t) 1 Echantillonnage 1 t t Après blocage, x*(t) devient b(t) : b(t) 1 t 0 TE On peut trouver l’expression de b(t) en notation de Laplace. Il suffit de voir que b(t) est la superposition de deux échelons de tension avec l’un en retard et l’autre inversé. En utilisant le théorème du retard, on obtient :

))exp(1(1)( pTp

pb E−−=

Sachant x*(t) est dans notre exemple un pic de Dirac et que la transformée de Laplace d’un pic de Dirac vaut 1, on peut alors trouver la fonction de transfert )( pB d’un bloqueur d’ordre zéro :

ppT

pB E )exp(1)(

−−=

On peut alors exprimer la fonction de transfert en notation complexe pour un signal sinusoïdal de pulsation ω. Dans les conditions d’Heaviside, on a :

Page 6: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 6 sur 14

=

=

−−−

=

−−=

)2

(sin)2

exp()(

)2

sin(2)

2exp()(

)2

exp()2

exp()

2exp()(

)exp(1)(

EE

E

E

E

EE

E

E

TcTTjjB

j

TjTjjB

j

TjTjTjjB

jTjjB

ωωω

ω

ωω

ω

ω

ωωω

ω

ωω

ω

ω est la pulsation du signal échantillonné et bloqué. Si on suppose le critère de Shannon

largement vérifié alors 12

⟨⟨=T

TT E

ω

Ainsi )2

(sin)( EE

TcTB

ωω =

Et )(sin)( fTcTfB EE π= e) Tracez l’allure du spectre d’un signal échantillonné et bloqué

Page 7: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 7 sur 14

f) Les signaux échantillonnés et bloqués sont ensuite envoyés vers un CAN 8 bits dont la pleine échelle est +/-5V. Calculez la résolution de ce convertisseur. Donnez le nombre en sortie du CAN en binaire et hexadécimal de la tension 1,25V

mVq 4012

108 =

−=

Quand pas signé [10011100] soit [9C] Quand signé [00011111] soit [1F] Partie 3 à QCM : Précisez si les affirmations suivantes pour les différentes situations sont vraies ou fausses :

- On s’intéresse aux transformées en z des deux signaux échantillonnés suivants :

a) la transformée s’écrit : X(z) = 1-z-1+z-2 Non ! b) la transformée s’écrit : X(z) = 1-z-2+z-4 oui ! c) la transformée s’écrit : Y(z) = 1+5z-1 Non ! d) la transformée s’écrit : Y(z) = 1+z-1+…. +z-4 Oui ! 6

- Un filtre numérique attaqué par une séquence impulsion xk répond par la séquence yk suivante :

a) la transmittance de ce filtre s’écrit : H(z) = 1 + 0,5.z-1+ z-2 Oui b) son algorithme s’écrit : yk = 2.xk + xk-1 + 0,5.xk-2 Non c) la transmittance en continu du filtre vaut Ho = 1,5ٱ Non d) il s’agit d’un filtre non récursif à réponse impulsionnelle infinie Non ici la réponse est finie e) pour certains types d’entrées, le filtre peut devenir instable. Il s’agit d’un filtre non récursif, donc stable

Page 8: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 8 sur 14

Exercice 2 : Utilisation du cours (**) :approximations de la transformée en z Partie 1 : Expressions p(z) : On a vu que la transformée en z n’était qu’un cas particulier de la transformée de Laplace mais qui mettait en œuvre une notation plus simple pour les tensions échantillonnées. Pour passer de l’une à l’autre de ces transformées, il faut poser : EpTez = Ce changement de variable fait intervenir une fonction exponentielle qui n’est pas évidente à manipuler dans les calculs, on emploie alors différentes approximations pour faciliter l’expression de p(z)

- équivalence de la dérivé Donnez l’expression de p(z) dans le cas où on assimile la dérivé d’un signal échantillonné à la pente entre deux échantillons

EE

EEE

E

Tz

zTzpieanaPar

ppSLaplacedeetransformétsor

zSzTz

TzzSzSZenetransformé

TTtststs

111:log

)()(':

)(1/)()()(*)(*)('

−−=

−→

−=

−−−=

- équivalence de l’intégrale

Donnez l’expression de p(z) dans le cas où l’intégrale du signal échantillonnée entre deux échantillons est prise égale à l’air du rectangle de largeur TE et de longueur égale à la moyenne des deux échantillons successifs

E

EEE

Tzzp

TztsTTtsts

)1(2

21)(*

2)(*)(* 1

+→

+=

−+ −

- théorème du retard Enoncez le théorème du retard avec la transformée de Laplace puis en z. Conclusion

)exp(

)()(*

)()(*

)exp()()()()(

E

E

E

pTzZ

zXTtx

zXkTx

ppXtxpXtx

=

=−

−→−→

ττ

Page 9: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 9 sur 14

Partie 2 :Le filtrage numérique 1) Détermination de la transmittance d’un filtre numérique qui répond de la même manière qu’un filtre passe haut d’ordre 1 à un échelon de tension par une méthode comparative:

- Considérons l’étude analogique d’un échelon de tension dans un premier temps. Rappelez les expressions de l’entrée x(t), x(p), puis de la fonction de transfert T(p), et

de la réponse Y(p) et en déduire y(t) sachant que )exp(1 1 atLpa

−+

− :

Consigne x Réponse y t t

x(t)=1 X(p)=p1

pppTτ

τ+

=1

)( y(p)=pp +

=+

ττ

τ1

1)1(

y(t)= τt

e−

- Considérons maintenant l’arrivée d’un échelon de tension numérisé. Donnez

l’expression de x(nTE), puis de X(z). Sachant que la variable t devient kTE donnez, en utilisant y(t), l’expression de y(kTE). En déduire Y(z) en utilisant les tables du cours puis T(z)

x(kTE) = 1 ; X(z)=1−z

z ; y(kTE)=kTkT EE

ee

=

−−ττ ; Y(z) =

−τET

ez

z ;T(z) =

−−

τET

ez

z 1

- En déduire l’algorithme associé qui nous permettra de paramétrer un circuit intégré qui aura les mêmes propriétés que le filtre analogique.

11

11

11 )1)(()1)((

)1)(())((

−−

−−

−−−

−+

=

−=

−=

−=

kkk

T

k

kkk

T

k

T

T

xxyey

xxyey

zzXzezY

zzXezzY

E

E

E

E

τ

τ

τ

τ

Filtre analogique

Page 10: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 10 sur 14

2) Détermination de la transmittance d’un filtre numérique qui répond de la même manière qu’un filtre passe haut d’ordre 1 à un échelon de tension par une méthode approximative

- Donnez la relation entre z et p avec l’équivalence des dérivés

EE

EEE

E

Tz

zTzpieanaPar

ppSLaplacedeetransformétsor

zSzTz

TzzSzSZenetransformé

TTtststs

111:log

)()(':

)(1/)()()(*)(*)('

−−=

−→

−=

−−−=

- Donnez l’expression de T(z) associé à un filtre passe bas d’ordre 1

)()1(

)1(11

111

)( 1

1

1

1

zTzT

z

TzT

zp

ppTE

E

E

=−+

−=

−+

−→

+= −

ττ

ττ

ττ

- En déduire la relation de récurrence

)(

)()())1()(())1()((

11

11

11

−−

−−

−−

−++

=

−+=+−=−+

kkkE

k

kkkkE

E

xxyT

y

xxyyTzzXzTzY

ττ

ττττ

- Vérifiez que ce modèle redonne le même algorithme que dans la question précédente si TE<<τ .

Dans les deux cas on a : )( 11 −− −+= kkkk xxyy 3) Détermination de la transmittance d’un filtre numérique qui répond de la même manière qu’un filtre passe haut d’ordre 1 à un échelon de tension par une méthode de synthèse. xk yk Donnez l’expression de la relation de récurrence et définir les différentes fonctions pour obtenir un passe haut d’ordre 1 identique à ceux calculés précédemment yk =H2xk-2 + H1xk-1 +H0xk+ yk-1

Z-1ou TE

Z-1ou TE

H0 H1 H2

+ +

Z-1

Page 11: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 11 sur 14

H2 = 0, H1 = -1, H0 = 1 4) Un signal analogique x(t) est échantillonné à la fréquence fe = 10 kHz puis traité par un filtre moyenneur dont l’algorithme et la transmittance s’écrivent :

)4cos(2)2cos(4331)(

321

EE

nnnn f

fffjfHet

xxxy ππ ++=

++= −−

Discutez des affirmations suivantes : a) un filtre moyenneur est toujours un filtre passe-bas : Oui car un filtre passe bas donne au moins la moyenne d’un signal b) la fréquence des signaux à l’entrée de ce filtre peut monter jusqu’à 10 kHz : Non à 5 kHz, il faut toujours se limiter à Shannon c) on voit sur l’algorithme que l’amplification en continu de ce filtre vaut T0 = 1 : Oui en se fixant des échantillons d’entrée constants et égalent à 1 alors la sortie est aussi égale à 1 d) on voit sur la transmittance que l’amplification en continu de ce filtre vaut T0=1 : Oui pour une fréquence nulle, on retrouve une amplification statique nulle 5) Un filtre numérique attaqué par un signal xn en échelon répond par le signal yn suivant :

Discutez des affirmations suivantes : a) ce filtre est un passe-bas : Non plutôt un filtre passe haut car on retrouve les premiers échantillons b) ce filtre a une transmittance H(z) = 1 – z-3 on a alors : 3

3 );1)(()( −− −=−= nnn xxyzzXzY ce

qui est le cas c) c’est un filtre à réponse impulsionnelle finie : Oui d) ce filtre a une transmittance statique égale à 1 : On voit qu’en régime continu, on a une sortie nulle en statique donc amplification statique nulle (en statique ω = 0, p = 0, donc z =1) 6)Un filtre numérique est défini par sa transmittance :

213)( 2

2

+−+

=z

zzzH

Discutez des affirmations suivantes : a) sa transmittance statique vaut 2 : Non elle vaut 1 b) l’algorithme correspondant à ce filtre s’écrit : yn = -2yn-2 + xn + 3xn-1 – xn-2 on a :

222

21

2

2

32;21

312

13)( −−−

−−

−+=++

−+=

+−+

= kkkkk xxxyyz

zzz

zzzH donc oui

c) ce filtre a 2 pôles : oui 2±

Page 12: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 12 sur 14

d) ce filtre est instable : Oui, pôle de module supérieur à 1 7)Un filtre numérique est caractérisé par l’algorithme : yn = 0,9.yn-1 – 0,1.xn-2 Discutez des affirmations suivantes a) sa transmittance s’écrit : H(z) = -0,1.z-2/(1-0,9.z-1) : )(1,0)(9,0)( 21 zXzzYzzY −− −= donc oui

b) ce filtre est stable :zz

zH9,0

1,0)( 2 −−

= les pôles sont réels et valent 2

9,09,0 ± <1 Stable

c) sa transmittance en continu est égale à -1 : Oui d) c’est un filtre à réponse impulsionnelle infinie temps : Oui Exercice 3 : Devoir maison (**) Le schéma fonctionnel d’un filtre est le suivant (on désigne respectivement xn et yn les échantillons d’entrée et de sortie du filtre): xn yn 1) Donnez l’expression de yn

64_32 161

165

21

165

161

−−− −+++−= nnnnnn xxxxxy

2) De quel type de filtre s’agit-il ? Il s’agit d’un filtre non récursif. 3) Donnez l’expression de sa fonction de transfert T(z)

( )

( )6431

6431

5851161)(

585116

)()(

−−−−

−−−−

−+++−=

−+++−=

zzzzzT

zzzzzXzY

2TE TE TE 2TE

-1/ 16

5/ 16

1/ 2

5/ 16

-1/ 16

+

Page 13: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 13 sur 14

4) Le filtre est-il stable. Justifiez en calculant les pôle de la fonction de transfert et en énonçant le critère de stabilité Oui, un filtre récursif est stable et n’a que des pôles nuls :

( ) )1585(1615851

161)( 6

23566431

zzzzzzzzzzT −+++−

=−+++−= −−−−

On a donc bien le module des pôles qui sont inférieurs à 1 5) Montrez que la fonction de transfert complexe de ce filtre peut s’écrire :

)8)2cos(10)6cos(2(16

)6exp()( ++−−

= kkkjkT πππ . Avec ETfk *= où f est la fréquence du

signal sinusoïdale en entrée.

( )

)8)2cos(10)6cos(2(16

)6exp()(

))2exp(58)2exp(5)6exp()6exp((16

)6exp()(

))12exp()8exp(5)6exp(8)2exp(51(161)(

))6exp()4exp(5)3exp(8)exp(51(161)(

5851161)( 6431

++−−

=

−+++−−−−

=

−−−+−+−+−=

−−−+−+−+−=

−+++−= −−−−

kkkjkT

kjkjkjkjkjkT

kjkjkjkjkT

TjTjTjTjjT

zzzzzT

EEEE

πππ

πππππ

ππππ

ωωωωω

6) Calculez le module de l’amplification pour k=0, k=1/8, k=1/4, k=3/8, k=1/2. En déduire la nature de ce filtre :

)8)2cos(10)6cos(2(161)( ++−= kkkT ππ

K module 0 1

1/8 1,03 ¼ 0,5

3/8 0,03 ½ 0

Filtre passe bas 6) Tracez l’allure du diagramme de phase )())(( kfkTArg = . Que remarquez-vous ? 0,5 k -3pi Le signal numérique de sortie se voir retardé de manière constante pour tous ces échantillons

Page 14: TD Corrige Analogique Numerique

TD corrige analogique numerique.doc Page 14 sur 14

8) Donnez l’expression du retard introduit par ce filtre dans la transmission des informations -3 TE

9) On donne l’évolution du module en fonction de k. Précisez le domaine des fréquences utiles en relation avec l’échantillonnage sur le graphe :

0

0,2

0,4

0,6

0,8

1

1,2

0 0,5 1 1,5 2 2,5

k

mod

ule

de T