11
Journal of Number Theory 130 (2010) 1098–1108 Contents lists available at ScienceDirect Journal of Number Theory www.elsevier.com/locate/jnt The Li criterion and the Riemann hypothesis for the Selberg class II Sami Omar a,,1 , Kamel Mazhouda b a Faculté des Sciences de Tunis, Département de Mathématiques, 2092 Campus Universitaire El Manar, Tunisia b Faculté des Sciences de Monastir, Département de Mathématiques, Monastir 5000, Tunisia article info abstract Article history: Received 8 August 2009 Revised 29 August 2009 Available online 9 December 2009 Communicated by David Goss Keywords: Selberg class Riemann hypothesis Li’s criterion In this paper, we prove an explicit asymptotic formula for the arithmetic formula of the Li coefficients established in Omar and Mazhouda (2007) [10] and Omar and Mazhouda (2010) [11]. Actually, for any function F (s) in the Selberg class S, we have RH λ F (n) = d F 2 n log n + c F n + O ( n log n), with c F = d F 2 (γ 1) + 1 2 log ( λ Q 2 F ) , λ = r j=1 λ 2λ j j , where γ is the Euler constant. © 2009 Elsevier Inc. All rights reserved. 1. Introduction Let ρ be range over the non-trivial zeros of the Riemann zeta-function ζ(s). The Li criterion asserts that the Riemann hypothesis is true if and only if all terms of the sequence λ n = ρ 1 1 1 ρ n , n 1, * Corresponding author. E-mail addresses: [email protected] (S. Omar), [email protected] (K. Mazhouda). 1 Supported by the Institut des Hautes Etudes Scientifiques at Bures-Sur-Yvette, France. 0022-314X/$ – see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2009.08.012

The Li criterion and the Riemann hypothesis for the Selberg class II

Embed Size (px)

Citation preview

Page 1: The Li criterion and the Riemann hypothesis for the Selberg class II

Journal of Number Theory 130 (2010) 1098–1108

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

The Li criterion and the Riemann hypothesis for the Selbergclass II

Sami Omar a,∗,1, Kamel Mazhouda b

a Faculté des Sciences de Tunis, Département de Mathématiques, 2092 Campus Universitaire El Manar, Tunisiab Faculté des Sciences de Monastir, Département de Mathématiques, Monastir 5000, Tunisia

a r t i c l e i n f o a b s t r a c t

Article history:Received 8 August 2009Revised 29 August 2009Available online 9 December 2009Communicated by David Goss

Keywords:Selberg classRiemann hypothesisLi’s criterion

In this paper, we prove an explicit asymptotic formula for thearithmetic formula of the Li coefficients established in Omar andMazhouda (2007) [10] and Omar and Mazhouda (2010) [11].Actually, for any function F (s) in the Selberg class S , we have

RH ⇔ λF (n) = dF

2n log n + cF n + O (

√n log n),

with

cF = dF

2(γ − 1) + 1

2log

(λQ 2

F

), λ =

r∏j=1

λ2λ j

j ,

where γ is the Euler constant.© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let ρ be range over the non-trivial zeros of the Riemann zeta-function ζ(s). The Li criterion assertsthat the Riemann hypothesis is true if and only if all terms of the sequence

λn =∑ρ

[1 −

(1 − 1

ρ

)n], n � 1,

* Corresponding author.E-mail addresses: [email protected] (S. Omar), [email protected] (K. Mazhouda).

1 Supported by the Institut des Hautes Etudes Scientifiques at Bures-Sur-Yvette, France.

0022-314X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.doi:10.1016/j.jnt.2009.08.012

Page 2: The Li criterion and the Riemann hypothesis for the Selberg class II

S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108 1099

are non-negative [7]. Bombieri and Lagarias [1], Coffey [2,3] and Li [8] obtained an arithmetic expres-sion for the Li coefficients λn and gave an asymptotic formula as n → ∞. More recently, Maslanka [9]computed λn for 1 � n � 3300 and empirically studied the growth behavior of the Li coefficients.In [10] and [11], the authors give a generalization of the Li criterion for the Selberg class and estab-lished an explicit formula for the Li coefficients.

In this paper, we give an explicit asymptotic formula for the generalized Li coefficients which isequivalent to the Riemann hypothesis for the Selberg class.

The Selberg class S [14] consists of Dirichlet series

F (s) =+∞∑n=1

a(n)

ns, �(s) > 1

satisfying the following hypothesis.

• Analytic continuation: there exists a non-negative integer m such (s − 1)m F (s) is an entire func-tion of finite order. We denote by mF the smallest integer m which satisfies this condition;

• Functional equation: for 1 � j � r, there are positive real numbers Q F , λ j and there are complexnumbers μ j , ω with �(μ j) � 0 and |ω| = 1, such that

φF (s) = ωφF (1 − s)

where

φF (s) = F (s)Q sF

r∏j=1

Γ (λ j s + μ j);

• Ramanujan hypothesis: a(n) = O (nε);• Euler product: F (s) satisfies

F (s) =∏

p

exp

( +∞∑k=1

b(pk)

pks

)

with suitable coefficients b(pk) satisfying b(pk) = O (pkθ ) for some θ < 12 .

It is expected that for every function in the Selberg class the analogue of the Riemann hypothesisholds, i.e., that all non-trivial (non-real) zeros lie on the critical line �(s) = 1

2 . The degree of F ∈ S isdefined by

dF = 2r∑

j=1

λ j.

The logarithmic derivative of F (s) has also the Dirichlet series expression

− F ′

F(s) =

+∞∑ΛF (n)n−s, �(s) > 1,

n=1

Page 3: The Li criterion and the Riemann hypothesis for the Selberg class II

1100 S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108

where ΛF (n) = b(n) log n is the generalized von Mangoldt function. If N F (T ) counts the number ofzeros of F (s) ∈ S in the rectangle 0 � �e(s) � 1, 0 < (s) � T (according to multiplicities) one canshow by standard contour integration the formula

N F (T ) = dF

2πT log T + c1T + O (log T )

in analogy to the Riemann–von Mangoldt formula for Riemann’s zeta-function ζ(s), the prototypeof an element in S . For more details concerning the Selberg class we refer to the surveys of Kac-zorowski [4], Kaczorowski and Perelli [5] and Perelli [12].

2. The Li criterion

Let F be a function in the Selberg class non-vanishing at s = 1 and let us define the xi-functionξF (s) by

ξF (s) = smF (s − 1)mF φF (s).

The function ξF (s) satisfies the functional equation

ξF (s) = ωξF (1 − s).

The function ξF is an entire function of order 1. Therefore, by the Hadamard product, it can be writtenas

ξF (s) = ξF (0)∏ρ

(1 − s

ρ

),

where the product is over all zeros of ξF (s) in the order given by |(ρ)| < T for T → ∞. Let λF (n),n ∈ Z, be a sequence of numbers defined by a sum over the non-trivial zeros of F (s) as

λF (n) =∑ρ

[1 −

(1 − 1

ρ

)n],

where the sum over ρ is

∑ρ

= limT �→∞

∑|ρ|�T

.

These coefficients are expressible in terms of power-series coefficients of functions constructed fromthe ξF -function. For n � −1, the Li coefficients λF (n) correspond to the following Taylor expansion atthe point s = 1

d

dzlog ξF

(1

1 − z

)=

+∞∑n=0

λF (−n − 1)zn

and for n � 1, they correspond to the Taylor expansion at s = 0

d

dzlog ξF

( −z

1 − z

)=

+∞∑λF (n + 1)zn.

n=0

Page 4: The Li criterion and the Riemann hypothesis for the Selberg class II

S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108 1101

Let Z be the multi-set of zeros of ξF (s) (counted with multiplicity). The multi-set Z is invariantunder the map ρ �→ 1 − ρ . We have

1 −(

1 − 1

ρ

)−n

= 1 −(

ρ − 1

ρ

)−n

= 1 −( −ρ

1 − ρ

)n

= 1 −(

1 − 1

1 − ρ

)n

and this gives the symmetry λF (−n) = λF (n). Using the corollary in [1, Theorem 1], we get the fol-lowing generalization of the Li criterion for the Riemann hypothesis.

Theorem 2.1. Let F (s) be a function in the Selberg class S non-vanishing at s = 1. Then, all non-trivial zerosof F (s) lie on the line �e(s) = 1/2 if and only if �e(λF (n)) > 0 for n = 1,2, . . . .

Under the same hypothesis of Theorem 2.1, the Riemann hypothesis is also equivalent to each of thetwo following conditions (a) or (b):

• (a) For each ε > 0, there is a positive constant c(ε) such that

�e(λF (n)

)� −c(ε)eεn for all n � 1.

• (b) The Li coefficients λF (n) satisfy

limn→∞

∣∣λF (n)∣∣1/n � 1.

The proof is the same as in [6, Theorem 2.2]. Next, we recall the following explicit formula for thecoefficients λF (n). Let consider the following hypothesis:

H: there exists a constant c > 0 such that F (s) is non-vanishing in the region:

{s = σ + it; σ � 1 − c

log(Q F + 1 + |t|)}.

Theorem 2.2. Let F (s) be a function in the Selberg class S satisfying H. Then, we have

λF (−n) = mF + n

(log Q F − dF

)

−n∑

l=1

(n

l

)(−1)l−1

(l − 1)! limX→+∞

{∑k�X

ΛF (k)

k(log k)l−1 − mF

l(log X)l

}

+ nr∑

j=1

λ j

(− 1

λ j + μ j+

+∞∑l=1

λ j + μ j

l(l + λ j + μ j)

)

+r∑

j=1

n∑k=2

(n

k

)(−λ j)

k+∞∑l=0

(1

l + λ j + μ j

)k

, (1)

where γ is the Euler constant.

Page 5: The Li criterion and the Riemann hypothesis for the Selberg class II

1102 S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108

3. An asymptotic formula

A natural question is to know the asymptotic behavior of the numbers λF (n). To do so, we use thearithmetic formula (1). Furthermore, we prove that it is equivalent to the Riemann hypothesis.

Theorem 3.1. Let F ∈ S , then

RH ⇔ λF (n) = dF

2n log n + cF n + O (

√n logn),

where

cF = dF

2(γ − 1) + 1

2log

(λQ 2

F

), λ =

r∏j=1

λ2λ j

j

and γ is the Euler constant.

Proof. The proof is an analogous of the argument used by Lagarias in [6].(⇒) First, recall that for n � 1,

d

dzlog ξF

(z

z − 1

)=

+∞∑n=0

λF (n + 1)zn.

Writing,

ξ ′F

ξF(s + 1) = F ′

F(s + 1) + mF

s+ mF

s + 1+

(log Q F +

r∑j=1

λ jΓ ′

Γ(λ j s + λ j + μ j)

).

Let define the coefficients {ηF (k), k ∈ N} by

− F ′

F(s + 1) − mF

s=

+∞∑k=0

ηF (k)sk

and the coefficients {τF (k), k ∈ N} by

log Q F +r∑

j=1

λ jΓ ′

Γ(λ j s + λ j + μ j) =

+∞∑k=0

τF (k)sk.

Then, we have

λF (−n) = mF −n∑

k=1

(n

k

)ηF (k − 1) +

n∑k=1

(n

k

)τF (k − 1), ∀n � 1.

Now, we write

H F (n) =n∑(

n

k

)ηF (k − 1)

k=1

Page 6: The Li criterion and the Riemann hypothesis for the Selberg class II

S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108 1103

and

K F (n) =n∑

k=1

(n

k

)τF (k − 1).

Furthermore, one has

τF (0) = log Q F +r∑

j=1

λ jψ(λ j + μ j) = log Q F − dF

2γ +

r∑j=1

λ j

(− 1

λ j + μ j+

+∞∑l=1

λ j + μ j

l(l + λ j + μ j)

),

where γ is the Euler constant, ψ = Γ ′Γ

is the digamma function and for all k � 1

τF (k) =r∑

j=1

(−λ j)k+1

+∞∑l=0

(1

l + λ j + μ j

)k+1

using

ψ(z) = −γ − 1

z+

+∞∑l=1

z

l(l + z).

Therefore, we obtain

K F (n) =r∑

j=1

n∑k=2

(n

k

)(−λ j)

k+∞∑l=0

1

(l + λ j + μ j)k

+(

n

1

)(log Q F +

r∑j=1

λ jΓ ′

Γ(λ j + μ j)

)

=r∑

j=1

n∑k=2

(n

k

)(−λ j)

k+∞∑l=1

1

(l + λ j + μ j − 1)k+

(n

1

)(log Q F +

r∑j=1

λ jΓ ′

Γ(λ j + μ j)

). (2)

Noting the first term of the right-hand side of (2) by T1(n). We have

T1(n) =r∑

j=1

{+∞∑l=1

n∑k=2

(n

k

)(−λ j)

k

(l + λ j + μ j − 1)k

}

=r∑

j=1

{+∞∑l=1

((1 − λ j

l + λ j + μ j − 1

)n

− 1 + λ jn

l + λ j + μ j − 1

)}.

Writing,

+∞∑l=1

((1 − λ j

l + λ j + μ j − 1

)n

− 1 + λ jn

l + λ j + μ j − 1

)=

n∑l=1

. . . ++∞∑

l=n+1

. . .

= T (1)1 (n) + T (2)

1 (n).

The estimates of T (1)1 (n) and T (2)

1 (n) are given by the following lemma [6, Lemma 5.1 and Lemma 5.2].

Page 7: The Li criterion and the Riemann hypothesis for the Selberg class II

1104 S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108

Lemma 3.2.

(i) For all n � |λ j + μ j − 1|2 , we have

T (1)1 (n) = λ j(n log n) +

(−λ j

Γ ′

Γ(λ j + μ j) + λ j I + e−λ j − 1

)n + O

(|λ j + μ j − 1|2 + 1), (3)

where the integral I is defined by

I =+∞∫1

e−λ jtdt

t.

(ii) For all n � |λ j + μ j − 1| + 2, we have

T (2)1 (n) = (

λ j − e−λ j + λ j I ′)n + O

(|λ j + μ j − 1| + 1), (4)

where the integral I ′ is defined by

I ′ =1∫

0

(1 − e−λ jt

)dt

t.

Therefore, we have

T1(n) =r∑

j=1

(λ j(n log n) + λ j

(I ′ − I − 1 − Γ ′

Γ(λ j + μ j)

)n + O (K j + 1)

),

where K j = max{|λ j + μ j − 1|2: 1 � j � r}. Then

T1(n) = dF

2n log n + dF

2

(I ′ − I − 1

)n −

r∑j=1

λ jΓ ′

Γ(λ j + μ j) + O

(r(K j + 1)

).

Using the formula

w∫0

(1 − e−t)dt

t−

+∞∫w

e−t dt

t= γ + log w,

where γ is the Euler constant, we get

I ′ − I =1∫

0

(1 − e−λ jt

)dt

t−

+∞∫1

e−λ jtdt

t

= λ j

[ λ j∫0

(1 − e−t)dt

t−

+∞∫λ j

e−t dt

t

]

= λ j[γ + logλ j].

Page 8: The Li criterion and the Riemann hypothesis for the Selberg class II

S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108 1105

Hence,

T1(n) = dF

2n log n +

[dF

2(γ − 1) + 1

2logλ

]n −

r∑j=1

λ jΓ ′

Γ(λ j + μ j) + O

(r(K j + 1)

),

with λ = ∏rj=1 λ

2λ j

j . Assembling all the results above, we find

λF (−n) = dF

2n log n +

{dF

2(γ − 1) + 1

2log

(λQ 2

F

)}n + H F (n) + O

(r(K j + 1)

). (5)

Now, a bound for H F (n) is stated in the following lemma.

Lemma 3.3. If the Riemann hypothesis holds for F ∈ S , then

H F (n) = O (√

n log n).

Proof. We use a contour integral argument and we introduce the kernel function

kn :=(

1 + 1

s

)n

− 1 =n∑

l=1

(n

l

)(1

s

)l

.

If C is a contour enclosing the point s = 0 counterclockwise on a circle of small enough positiveradius, the residue theorem gives

I(n) = 1

2iπ

∫C

kn(s)

(− F ′

F(s + 1)

)ds =

n∑l=1

(n

l

)ηl−1 = H F (n).

Let −3 < σ0 < −2, σ1 = 2√

n and T = √n + εn , for some 0 < εn < 1. Changing the contour C by the

contour C ′ consisting of vertical lines with real part �e(s) = σ0, �e(s) = σ1 and the horizontal lines(s) = ±T . Then, using the residue theorem, we obtain

I ′(n) = 1

2iπ

∫C ′

kn(s)

(− F ′

F(s + 1)

)ds

= H F (n) +∑

ρ; |ρ|�T

(1 + 1

ρ − 1

)n

− 1 + O (1).

The term O (1) evaluates the residues coming from the trivial zeros of F (s). Using the symmetryρ �→ 1 − ρ , we can write

(1 − ρ

−ρ

)n

− 1 =(

ρ − 1

ρ

)n

− 1.

Then

I ′(n) = H F (n) − λF (−n, T ) + O (1),

Page 9: The Li criterion and the Riemann hypothesis for the Selberg class II

1106 S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108

where

λF (n, T ) =∑

ρ; |ρ|�T

1 −(

1 − 1

ρ

)n

with a parameter T . Observing that |T − √n| < 1 and that there are O (log n) zeros in an interval of

length one at this height. Furthermore, for each zero ρ = β + iγ with√

n � |(ρ)| < √n + 1, we have

∣∣∣∣(

ρ − 1

ρ

)∣∣∣∣ �∣∣∣∣1 + 1

n

∣∣∣∣n/2

� 2.

Hence,

∣∣λF (−n,√

n ) − λF (−n, T )∣∣ = O (logn).

We now choose the parameters σ0 and T appropriately to avoid poles of the integrand. We maychoose σ0 so that the contour avoids any trivial zero and T = √

n + εn with 0 � εn � 1 so thatthe horizontal lines do not approach closer than O (log n) to any zero of F (s). Recall that [15], for−2 < �e(s) < 2 there holds

F ′

F(s) =

∑{ρ; |(ρ−s)|<1}

1

s − ρ+ O

(log

(Q F

(1 + |s|))).

Then on the horizontal line in the interval −2 � �e(s) � 2, we have

∣∣∣∣ F ′

F(s + 1)

∣∣∣∣ = O(log2 T

).

The Euler product for F (s) converges absolutely for �e(s) > 1. Hence the Dirichlet series for F ′F (s)

converges absolutely for �e(s) > 1. More precisely for σ = �e(s) > 1

∣∣∣∣ F ′

F

∣∣∣∣(σ ) < ∞.

For σ = �e(s) > 2, we obtain the bound

∣∣∣∣ F ′

F(s)

∣∣∣∣ �∣∣∣∣ F ′

F

∣∣∣∣(σ ) � 2−(σ−2).

Consider the integral I ′(n) on the vertical segment (L1) having σ1 = 2√

n. We have

∣∣∣∣(

1 − 1

s

)n

− 1

∣∣∣∣ �(

1 + 1

σ1

)n

+ 1 �(

1 + 1

2√

n

)n

� exp(√

n/2) < 2√

n.

Then

∣∣∣∣ F ′

F(s)

∣∣∣∣ � C02−2(√

n+2).

Page 10: The Li criterion and the Riemann hypothesis for the Selberg class II

S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108 1107

Furthermore, the length of the contour is O ( nlogn ), we obtain |I ′L1

| = O (1). Let s = σ + it be a point

on one of the tow horizontal segment. We have T �√

n, so that∣∣∣∣1 + 1

s

∣∣∣∣ � 1 + σ + 1

σ 2 + T 2.

By hypothesis T 2 � n, so for −2 � σ � 2, we have

∣∣kn(s)∣∣ �

(1 + 3

4 + n

)n

+ 1 = O (1)

and ∣∣∣∣ F ′

F(s)

∣∣∣∣ = O(log2 T

) = O(log2 n

)since we have chosen the ordinate T to stay away from zeros of F (s). We step across the interval (L2)

toward the right, in segments of length 1, starting from σ = 2. Furthermore

∣∣∣∣kn(s + 1) + 1

kn(s) + 1

∣∣∣∣ �(

1 + 1

T 2

)n

� e,

we obtain an upper bound for |kn(s) F ′F (s)| that decreases geometrically at each step, and after O (log n)

steps it becomes O (1) the upper bound is∣∣I ′L2,L4(n)

∣∣ = O(log2 n + √

n) = O (

√n ).

For the vertical segment (L3) with �e(s) = σ0, we have |kn(s)| = O (1) and | F ′F (s)| = O (Q F (log(|s| +

1))). Since the segment (L3) has length O (√

n ), we obtain∣∣I ′L3

∣∣ = O (√

n logn).

Totaling all these bounds above gives

H F (n) = λF (−n, T ) + O (√

n log n),

with T = √n + εn .

If the Riemann hypothesis holds for F (s), then we have∣∣∣∣1 − 1

ρ

∣∣∣∣ = 1.

Since each zero contributes a term of absolute value at most 2 to λF (n, T ), we obtain using the zerodensity estimate

λF (n, T ) = O (T log T + 1).

Therefore

λF (−n,√

n ) = λF (n,√

n ) = O (√

n log n)

and Lemma 3.3 follows. �

Page 11: The Li criterion and the Riemann hypothesis for the Selberg class II

1108 S. Omar, K. Mazhouda / Journal of Number Theory 130 (2010) 1098–1108

Using Lemma 3.3, the expression (5) of λF (−n) and λF (−n) = λF (n), we obtain

RH ⇒ λF (n) = dF

2n log n +

{dF

2(γ − 1) + 1

2log

(λQ 2

F

)}n + O (

√n logn). �

Conversely, if

λF (n) = dF

2n log n +

{dF

2(γ − 1) + 1

2log

(λQ 2

F

)}n + O (

√n logn),

then, λF (n) grows polynomially in n. Therefore, if RH is false then from conditions (a) or (b), some Licoefficients become exponentially large in n and negative and the asymptotic formula of λF (n) rulesout.

Examples. 1. In the case of the Riemann zeta-function, we have dζ = 1, Q ζ = π−1/2 and λ = 1/2. Thisreproves the asymptotic formula established by A. Voros in [16, Eq. (17), p. 59].

2. Lagarias established a similar asymptotic formula for λn(π) [6, Eqs. (1.12) and (1.13)] in the caseof the principal L-function L(s,π) attached to an irreducible cuspidal unitary automorphic represen-tation of GL(N), as in Rudnick and Sarnak [13, §2]. Lagarias’ result is about a subclass of automorphicL-functions and such functions belong to the Selberg class only if we assume the Ramanujan hypoth-esis.

Acknowledgment

The authors would like to express their sincere gratitude to the referee for his many valuablesuggestions which increased the clarity of the presentation.

References

[1] E. Bombieri, J.C. Lagarias, Complements to Li’s criterion for the Riemann hypothesis, J. Number Theory 77 (2) (1999) 274–287.

[2] M. Coffey, Toward verification of the Riemann hypothesis: Application of the Li criterion, Math. Phys. Anal. Geom. 8 (3)(2005) 211–255.

[3] M. Coffey, An explicit formula and estimations for Hecke L-functions: Applying the Li criterion, Int. J. Contemp. Math. Sci.2 (18) (2007) 859–870.

[4] J. Kaczorowski, Axiomatic theory of L-functions: The Selberg class, in: Analytic Number Theory, in: Lecture Notes in Math.,vol. 1891, Springer, 2006, pp. 133–209.

[5] J. Kaczorowski, A. Perelli, The Selberg class: A survey, in: K. Györy, et al. (Eds.), Number Theory in Progress, Proc. Conf. inHonor of A. Schinzel, de Gruyter, 1999, pp. 953–992.

[6] J.C. Lagarias, Li coefficients for automorphic L-functions, Ann. Inst. Fourier (Grenoble) 57 (2007) 1689–1740.[7] X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory 65 (2) (1997) 325–333.[8] X.-J. Li, Explicit formulas for Dirichlet and Hecke L-functions, Illinois J. Math. 48 (2) (2004) 491–503.[9] K. Maslanka, Effective method of computing Li’s coefficients and their properties, preprint, arXiv:math.NT/0402168v5, 2004.

[10] S. Omar, K. Mazhouda, Le critère de Li et l’hypothèse de Riemann pour la classe de Selberg, J. Number Theory 125 (1)(2007) 50–58.

[11] S. Omar, K. Mazhouda, Corrigendum et addendum à « Le critère de Li et l’hypothèse de Riemann pour la classe de Selberg »[J. Number Theory 125 (1) (2007) 50–58], J. Number Theory 130 (4) (2010) 1109–1114, this issue.

[12] A. Perelli, A survey of the Selberg class of L-functions, Part I, Milan J. Math. 73 (2005) 19–52.[13] Z. Rudnick, P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81 (1996) 269–322.[14] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, presented at the Amelfi conference on

number theory, September 1989, in: Collected Papers, vol. II, Springer-Verlag, 1991.[15] K. Srinivas, Distinct zeros of functions in the Selberg class, Acta Arith. 103 (3) (2002) 201–207.[16] A. Voros, A sharpening of Li’s criterion for the Riemann hypothesis, Math. Phys. Anal. Geom. 9 (1) (2005) 53–63.