152
COSSECO SA, Route de Pra de Plan 5 1618 Châtel-St-Denis Tél : + 41 21 948 81 70, e-mail : [email protected] L’efficacité Energétique maîtrisée Solarline: solution solaire hybride de chauffage, ECS et climatisation 1. Présentation de l’entreprise

Catalogue COSSECO 2014 - Pompe à Chaleur Photovoltaïque

  • Upload
    pguiolc

  • View
    390

  • Download
    5

Embed Size (px)

DESCRIPTION

Descriptif et données techniques des Pompes à Chaleur Solaire Photovoltaïque COSSECO Solarline. Les PAC COSSECO chauffent les bâtiment et l'eau chaude sanitaires, climatisent grâce à 50% d'électricité auto-produite par des panneaux photovoltaïque. Un solution de stockage thermique est intégrée.

Citation preview

  • 1. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 1. Prsentation de lentreprise

2. SOLARLINE Auteur : de Siebenthal Christophe Date : 21.03.2014 3. Plan de la prsentation Introduction Liste de matriels Principe gothermique Distribution hydraulique Rfrences Principe arothermique Distribution hydraulique Rfrences Contact 4. Introduction SOLARLINE est une solution de rgulation nergtique innovante dveloppe en Suisse pour rduire la consommation lectrique des pompes chaleur classique. laide dun rgulateur lectronique intelligent et dun systme de stockage dnergie innovant, le systme va coupler llectricit solaire produite par vos panneaux photovoltaque avec celle du rseau lectrique permettant ainsi de chauffer votre eau sanitaire et votre systme de chauffage domestique. SOLARLINE possde aussi un mode rversible qui vous permet de climatiser votre maison gratuitement laide de lnergie solaire qui est abondante en t. De plus, cette rversibilit, vous permet de recharger vos sondes gothermique. 5. Lapport solaire de la journe couvre tous les besoins : chauffage / rafraichissement et Eau Chaude Sanitaire. Le surplus dnergie produit par les panneaux photovoltaques est alors converti par la PAC en eau chaude / froide et est stock dans des ballons pendant le jour puis diffus pendant la nuit. 6. Si lapport solaire photovoltaque ne couvre pas tous les besoins, la solution Solarline prend un apport du rseau lectrique pour conserver le btiment la temprature demande. De plus, si le tarif lectrique est plus favorable la nuit, alors Solarline peut chauffer de leau la nuit pour une utilisation de chauffage pendant la journe. 7. Liste de matriels Un kit Solarline standard : Pompe chaleur Panneaux photovoltaque Coffret de rgulation intelligente Ballon deau chaude sanitaire Ballon de stockage dnergie Circulateurs Vannes trois-voies Sondes de temprature Le coffret de rgulation : Automate programmable SAIA Rgulateurs solaire Cosseco Variateurs de vitesse (compresseur) Variateurs de vitesse (ventilateur) Interface utilisateur Protection et scurit Bypass manuel 8. Principe gothermique 9. Distribution hydraulique 10. Rfrence : Chtel-St-Denis 11. Rfrence : Miramar 12. Rfrence : Golay 13. Installation arothermique 14. Distribution hydraulique 15. Rfrence : St-Sylvester 16. Contact Pour dventuelles questions, veuillez nous contacter : Tlphone : 021 948 81 70 E-mail : [email protected] Fax : 021 948 81 72 Pour observer le fonctionnement dune de nos installation en temps rel, rendez-vous sur notre site internet : http://www.cosseco.ch/performance-pompe-a-chaleur-solarline 17. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 2. Kit Solarline 18. Coffret 10[kW] thermique (SA-10) Version 1.0 le 27.03.2014 19. Page 3 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 1. Introduction Le coffret lectrique permet de piloter toutes les solutions de produits SA-10 de COSSECO. Principe de chauffage : Lutilisateur fixe une consigne qui sera atteinte en combinant lnergie du rseau et lnergie solaire. Leau chaude sanitaire est prioritaire. Tant que la consigne nest pas atteinte, le systme se focalise sur le ballon ECS. Une fois la consigne de leau chaude sanitaire atteinte, le systme va faire du stockage. Les deux modes de climatisation : Lutilisateur fixe une temprature de consigne qui sera atteinte en combinant lnergie du rseau et lnergie solaire. Lutilisateur fixe une temprature de consigne et le systme utilise uniquement lnergie solaire pour essayer de latteindre. Un kit standard inclut : Pompe chaleur arothermique Panneaux photovoltaques Ballon deau chaude sanitaire Ballon de stockage dnergie (sous forme deau chaude/froide) Sondes intrieurs & extrieur 2 Circulateurs (PAC => Ballon, Ballon => Chauffage domestique) Vanne trois voies (Mode stockage & Mode ECS) Vanne trois voies mlangeuse (Chauffage domestique) Caractristiques technique Coffret arothermique 10 [kW] maximum Cartes solaires (puissances disponible) : 1.5 2 2.5 [kW] Variateur de vitesse Compresseur 3.7 [kW] Variateur de vitesse Ventilateur 0.2 [kW] 20. Page 4 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 2. Schma bloc Puissance : Compresseur Ventilateur Signaux : Alarmes Temprature Pression Ballon Eau Chaude Sanitaire Panneaux Photovoltaques Rseau lectrique (Tableau lectrique principal) PAC Arothermique Coffret SA-10 Rgulation & Modulation en puissance de la PAC Lecture des sondes de temprature Paramtrages divers Chauffage & Climatisation Alimentations Sonde temprature extrieur Sonde(s) temprature intrieur Ballon Stockage Intrieur Lgende : Extrieur 21. Page 5 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 3. Schma de principe hydraulique PAC Arothermique Vannes manuel Vannes manuel Vannes manuel Vannes manuel Vannes manuel Vanne 3 voies Circulateur Vannes manuel Zone 1 Chauffage Climatisation Circulateur Vanne 3 voies Thermoplongeur Sonde Sonde StockageECS Thermoplongeur Echangeur 22. Page 7 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 5. Schma hydraulique 23. Page 11 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 6.2.Mcanique 6.2.1. Structure du coffret Bornes Caniveau Caniveau Caniveau Caniveau Contacteur [Princ..Solair] Portefusible Disjoncteur De Phase Alimentation 24V Disjoncteurde scurit Var1 COMP Var2 FAN Caniveau Relais K5[0..7] Mesure de courant 24V IN Carte solaire OUT Automate Commutateur descurit 24. Page 26 sur 26 SA-10 Gamme : Arothermie Gnrateur : Solarline Auteur : de Siebenthal Christophe Date de cration ou modification: 27/03/2014 7. Contact En cas de problme / question veuillez nous contacter : Tlphone : 021 948 81 70 E-mail : [email protected] 25. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 3. Pompes Chaleur (PAC) 26. Donnes techniques Solarline CSAW10R1 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline CSAW10R1 Dimensions et technologie Dimensions $:% $:% $:% $:% $:% $:+ $:+ Dimensions Positioning SIDE FAN UNITS AW09B AW10B 600mm400mm 350mm 1,000mm AW12B AW13B AW15B AW12/H AW13/H Positioning 27. Donnes techniques Solarline CSAW10R1 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] 1. Compresseur Hitachi scroll 9. Echangeur palques brases Swep 2. Connection de service 10. Corp rsistif (optionel) 3. Vanne basse pression Emerson 11. Pompe de circulation (optionnelle) 4. Vanne haute pression Emerson 12. Accumulateur 5. Moteur de Fan 13. Sparateur liquide - gaz 6. Pale de Fan 14. Vanne dexpansion Emerson 7. Echangeur 15. Jauge de basse pression 8. Vanne 4 voies 16. Vanne differentiel de pression 46 Components AW09B AW10B 1 8 4 2 3 5 6 7 10 12 13 15 14 9 16 11 Components 1. Compressor 2. Service connection 3. Low pressure switch 4. High pressure switch 5. Fan motor 6. Fan blade 7. Finned coil heat exchanger 8. Four way valve 9. Plate heat exchanger 10. Electric heater (optional) 11. Water pump (optional) 12. Accumulator 13. Gas-liquid separator 14. Expansion valve 15. Low pressure gauge 16. Differential pressure flow switch 46 1 4 2 3 5 10 12 13 15 14 9 16 11 9. Plate he 10. Electri 11. Water p 12. Accum 13. Gas-liq 14. Expans 15. Low pr 16. Differe 28. Donnes techniques Solarline CSAW10R1 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques! Les donnes ci-dessus sont testes sous la norme EN14511 . 4.07 3.18 2.49 3.65 2.71 COP 3.13 2.09 2.88 HITACHI Scroll CSAW10R1 Production de chaleur / consommation lectrique 7/35 kW 11.0/2.7 Production de chaleur / consommation lectrique 7/45 kW 10.5/3.3 Production de chaleur / consommation lectrique 7/55 kW 10.2/4.1 Production de chaleur / consommation lectrique 2/35 kW 9.5/2.6 Production de chaleur / consommation lectrique 2/45 kW 9.2/3.4 Production de chaleur / consommation lectrique -7/35 kW 7.2/2.3 Production de chaleur / consommation lectrique -7/45 kW 7.1/3.4 Production de froid / consommation lectrique 35/7 kW 9.5/3.3 1.87 23 3000 220 Puissance 55 1050x1050x450 DN25 Compresseur Condenseur 125 Flux nominal du liquide de chauffage m^3/h Chute de pression interne flux nominal kPa Flux d'air maximum m3/h Puissance maximale du Fan W 380-415V / 3 phases / 50 Hz Temprature de chauffe maximale Dimensions (HxLxP) mm Connexion Poids kg 29. Donnes techniques Solarline CSAW10R1 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de puissances Heat pump performance curve 5 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Ambient temp. Ambient temp. Ambient temp. 30. Donnes techniques Solarline CSAW10R1 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de refroidissement Chute de pression Water Pressure Plots m3/h 10 20 30 1.0 2.0 3.0 4.0 40 KPa AW09B AW10B Optional water pump curve (AW09B AW10B ) Water Pressure PlotsWater Pressure Plots m3/h 10 20 30 1.0 2.0 3.0 4.0 40 KPa AW09B AW10B Optional water pump curve (AW09B AW10B ) Water Pressure Plots 31. Donnes techniques Solarline SA-13 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SA-13 Dimensions et technologie ",,001,,00 23,00 /4,,,00 ! 32. Donnes techniques Solarline SA-13 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques Les donnes ci-dessus sont testes sous la norme EN14511 . 2.88 2.02 2.84 HITACHI Scroll 4.00 3.14 2.64 3.53 2.74 Production de chaleur / consommation lectrique 2/35 kW 12.0/3.4 Production de chaleur / consommation lectrique 2/45 COP Production de chaleur / consommation lectrique 7/45 kW 13.5/4.3 Production de chaleur / consommation lectrique 7/55 kW 13.2/5.0 SA-13 Production de chaleur / consommation lectrique 7/35 kW 14.0/3.5 kW 11.8/4.3 Production de chaleur / consommation lectrique -7/35 kW 9.5/3.3 Puissance 380-415V / 3 phases / 50 Hz Production de chaleur / consommation lectrique -7/45 kW 8.9/4.4 Production de froid / consommation lectrique 35/7 kW 12.2/4.3 Poids 55 1075 x 1105 x 505 DN25 Compresseur Condenseur 0.67 24 5000 300 kg 175 Flux nominal du liquide de chauffage l/s Chute de pression interne flux nominal kPa Flux d'air maximum m3/h Puissance maximale du Fan W Temprature de chauffe maximale Dimensions (HxLxP) mm Connexion 33. Donnes techniques Solarline SA-13 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de puissance de chauffage Ambient temp. Ambient temp. Ambient temp. 34. Donnes techniques Solarline SA-13 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de puissance de refroidissement 35. Donnes techniques Solarline SA-13 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Chute de pression Composants 1. Compresseur Hitachi scroll 9. Echangeur palques brases Swep 2. Connection de service 10. Corp rsistif (optionel) 3. Vanne basse pression Emerson 11. Pompe de circulation (optionnelle) 4. Vanne haute pression Emerson 12. Accumulateur 5. Moteur de Fan 13. Sparateur liquide - gaz 6. Pale de Fan 14. Vanne dexpansion Emerson 7. Echangeur 15. Jauge de basse pression 8. Vanne 4 voies 16. Vanne differentiel de pression 36. Donnes techniques Solarline SA-15 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SA-15 Dimensions et technologie ",,001,,00 23,00 /4,,,00 ! 37. Donnes techniques Solarline SA-15 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] 1. Compresseur Hitachi scroll 10. Pompe de circulation (optionnelle) 2. Vanne haute pression Emerson 11. Vanne de basse pression 3. Connection de service 12. Vanne dexpansion Emerson 4. Vanne 4 voies 13. Distributeur 5. Echangeur 14. Filtre 6. Moteur de Fan 15. Sparateur Gaz / Liquide 7. Pale de Fan 16. Filtre Sec 8. Echangeur palques brases Swep 17. Accumulateur 9. Corp rsistif (optionel) 18. Gauge basse pression ! !& !' !" !( !! !) !* !# ! ! !"#$%&'!"#(%&'!"#)%&' ! " # $ !% & ' ( ) * !$ ! 38. Donnes techniques Solarline SA-15 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques!! Les donnes ci-dessus sont testes sous la norme EN14511 . kg 180 Flux nominal du liquide de chauffage l/S Chute de pression interne flux nominal kPa Flux d'air maximum m3/h Puissance maximale du Fan W Temprature de chauffe maximale Dimensions (HxLxP) mm Connexion Poids 55 1075 x 1105 x 505 DN25 Compresseur Condenseur 0.76 31 5000 300 Puissance 380-415V / 3 phases / 50 Hz Production de chaleur / consommation lectrique -7/45 kW 10.2 / 5.1 Production de froid / consommation lectrique 35/7 kW 14.5 / 5.2 kW 13.3 / 5.0 Production de chaleur / consommation lectrique -7/35 kW 10.8 / 3.9 SA-15 Production de chaleur / consommation lectrique 7/35 kW 16.2 / 4.1 Production de chaleur / consommation lectrique 7/45 kW 15.4 / 5.0 Production de chaleur / consommation lectrique 7/55 kW 14.8 / 6.2 Production de chaleur / consommation lectrique 2/35 kW 13.8 / 4.3 Production de chaleur / consommation lectrique 2/45 COP 2.77 2.00 2.79 HITACHI Scroll 3.95 3.08 2.39 3.21 2.66 39. Donnes techniques Solarline SA-15 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de chauffage 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Ambient temp. Ambient temp. Ambient temp. 40. Donnes techniques Solarline SA-15 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de refroidissement Chute de pression 41. Donnes techniques Solarline SA-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SA-20 Dimensions !! ! ! ! Main parts Item AW20B Compressor Hitachi Plate heat exchanger Swep//GEA Expansion valve Emerson Controller Siemens Electric parts Schneider A/ C wat er i nl et A/ C wat er out l et 134.5 152155 129 1,307 695 1,045 1,025 740 1,080 AW20 AW20B TOP FAN UNITS AW20B LSQ31 900mm 900mm 2,000mm Positioning 42. Donnes techniques Solarline SA-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] !!!!!!!!!!!!!!!!!!!!!!!!! Composants Compresseur Hitachi scroll Echangeur palques brases Swep Vanne dexpansion Emerson Vanne haute pression Emerson Vanne basse pression Emerson 43. Donnes techniques Solarline SA-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques!! ! Les donnes ci-dessus sont testes sous la norme EN14511 . kg 270 Flux nominal du liquide de chauffage l/s Chute de pression interne flux nominal kPa Flux d'air maximum m3/h Puissance maximale du Fan W Temprature de chauffe maximale Dimensions (HxLxP) mm Connexion Poids 55 1050 x 1300 x 690 DN40 Compresseur Condenseur 1.03 38 6'000 440 Puissance 380-415V / 3 phases / 50 Hz Production de chaleur / consommation lectrique -7/45 kW 14.2/6.9 Production de froid / consommation lectrique 35/7 kW 19.6/6.8 kW 18.5/6.8 Production de chaleur / consommation lectrique -7/35 kW 14.3/5.0 Echangeur plaques brazes SA-20 Production de chaleur / consommation lectrique 7/35 kW 21.7/5.1 Production de chaleur / consommation lectrique 7/45 kW 21.4/6.8 Production de chaleur / consommation lectrique 7/55 kW 20.8/8.4 Production de chaleur / consommation lectrique 2/35 kW 18.9/5.2 Production de chaleur / consommation lectrique 2/45 COP 2.86 2.06 2.88 HITACHI Scroll 4.25 3.15 2.48 3.63 2.72 44. Donnes techniques Solarline SA-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de chauffageHeat pump performance curve 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Ambient temp. Ambient temp. Ambient temp. PuissancechaudP.ElectriqueCOP 45. Donnes techniques Solarline SA-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de refroidissement Chute de pression PuissancefroidCOP 46. Donnes techniques Solarline SA-32 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SA-32 Dimensions et implantation Heat pump dimension LSQ31R1/R A/C water inlet A/C water outlet Hot water outlet Hot water inlet 152152155 129 84.5 1,080 695 1,239 1,215 1,320 740 170 1,330 47. Donnes techniques Solarline SA-32 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances SA-32 Les donnes ci-dessus sont testes sous la norme EN14511 . Production de chaleur / consommation lectrique 7/35 kW 32.0 / 8.4 COP = 3.81 SA-32 Production de chaleur / consommation lectrique 7/45 * kW 31.2 / 10.0 COP = 3.12 Production de chaleur / consommation lectrique 7/55 * kW 30.0 / 12.6 COP = 2.38 Production de chaleur / consommation lectrique 2/35 kW 26.8 / 8.4 COP = 3.19 Production de chaleur / consommation lectrique 2/45 * kW 26.4 / 10.0 COP = 2.64 Production de chaleur / consommation lectrique -7/35 * kW 20.8 / 8.2 COP = 2.54 Production de chaleur / consommation lectrique -7/45 * kW 20.4 / 9.6 COP = 2.13 Production de froid / consommation lectrique 35/7 kW 31.0 / 10.8 COP = 2.87 Puissance 380-415V/3PH/50Hz Flux d'eau chaude entre 20 et 50C l/h 1100 Compresseur 2 * HITACHI scroll Condenseur Echangeur plaques brases Flux nominal du liquide de chauffage m3 /h Chute de pression interne flux nominal kPa 5.4 30 Flux d'air maximum m3/h 10'000 Puissance maximale du Fan W 820 Temprature de chauffe maximale 58 Dimensions (HxLxP) mm 1'325 X 1'300 X 690 Connexion DN 40 Poids kg 310 48. Donnes techniques Solarline SA-32 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de chauffage SA-32 Heat pump performance curve 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Ambient temp. Heating performance curve Model:LSQ31R1/R P.Thermique!P.Electrique! 49. Donnes techniques Solarline SA-32 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de froid SA-32 Courbe de chute de pression SA-32 Heat pump water pressure drop m3/h 10 20 30 2.0 3.0 4.0 40 KPa 5.0 6.0 7.0 P.Thermique!P.Electrique! 1=Flow temperature 5 Full load 2=Flow temperature 7 Full load 3=Flow temperature 9 Full load Ambient temp. Cooling performance curve 50. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SW-10, 13, 15 et 20 Dimensions et technologie Main parts Dimension GHP07B GHP09B GHP10B GHP12B GHP13B GHP15B GHP20B Unit:mm 60 outdoor outlet outdoor inlet indoor outlet indoor inlet Sensor outletpower cable outlet 450 30 450 543 100 920 24080 80 115 600 600 600 600 Model GHP07B GHP09B GHP10B GHP12B GHP13B GHP15B GHP20B Compressor Panasonic Daikin Hitachi Daikin Hitachi Hitachi Hitachi Plate exchanger Swep/Gea Swep/Gea Swep/Gea Swep/Gea Swep/Gea Swep/Gea Swep/Gea Expansion valve Emerson Emerson Emerson Emerson Emerson Emerson Emerson Controller Siemens Siemens Siemens Siemens Siemens Siemens Siemens Electric parts Schneider Schneider Schneider Schneider Schneider Schneider Schneider Filter drier Emerson Emerson Emerson Emerson Emerson Emerson Emerson Refrigerant Liquid indicator Emerson Emerson Emerson Emerson Emerson Emerson Emerson 51. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques! ! Modle Type SW-10 SW-13 SW-15 SW-20 Caractristiques Dimensions HxWxD Poids kg 135 145 155 165 Refrigerant Type Masse de remplissage kg 1.7 1.8 2.2 2.25 Presison de fonctionnement Mpa 4.2 4.2 4.2 4.2 Taille de connecteur hydraulique - chaud Pouces G1 G11/4 G11/4 G11/2 Taille de connecteur hydraulique - froid Pouces G1 G11/4 G11/4 G11/2 Evaporateur Type Condenseur Type Compresseur Type Performances Puissance thermique - chaud B0/W35 kW 10 13 15.5 20.3 Consommation lectrique kW 2.22 2.9 3.5 4.6 COP 4.5 4.48 4.43 4.41 Dbit - circuit intrieur m3/h 1.72 2.24 2.67 3.49 Chute de pression - circuit intrieur kpa 12 14 14 14 Dbit - circuit extrieur m3/h 2.23 2.9 3.44 4.5 Chute de pression - circuit extrieur kpa 20 23 25 24 Puissance thermique - chaud W10/W35 kW 12.7 16.3 19.5 25.7 Consommation lectrique kW 2.27 2.96 3.57 4.68 COP 5.59 5.51 5.46 5.49 Dbit - circuit intrieur m3/h 2.18 2.8 3.35 4.42 Dbit - circuit extrieur m3/h 2.99 3.82 4.57 6.03 Puissance thermique - froid W35/W7 kW 10.6 13.9 16.3 21.8 Consommation lectrique kW 2.2 2.85 3.4 4.5 COP 4.82 4.88 4.79 4.84 Dbit - circuit intrieur m3/h 1.82 2.39 2.8 3.75 Dbit - circuit extrieur m3/h 2.2 2.88 3.39 4.52 Power Type Sound power level dB(A) 47 48 48 48 960 x 600 x 600 R410A Echangeur plaques brazes Swep Echangeur plaques brazes Swep Hitachi scroll Triphas 52. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de puissance chauffage SW-10 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Heating Performance Conditions Curve 53. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de puissance chauffage SW-13 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Heating Performance Conditions Curve 54. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de puissance chauffage SW-15 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Heating Performance Conditions Curve 55. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbes de puissance chauffage SW-20 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve Heating Performance Conditions Curve 56. Donnes techniques Solarline SW-10 SW-13 SW-15 SW-20 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Chute de pression SW-10 ! SW-13 ! SW-15 ! SW-20 57. Donnes techniques Solarline SW 26 et 30 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Solarline SW 26 et 30 Dimensions et technologie Dimension Unit:mm GHP30 GHP30BGHP26 GHP26B Main parts Item GHP26B GHP30B Compressor Hitachi Hitachi Plate heat exchanger Swep Swep Expansion valve Emerson Emerson Controller Siemens Siemens Electric parts Schneider Schneider Dry filter Emerson Emerson outdoor outlet outdoor inlet indoor outlet indoor inlet Sensor outlet power cable outlet 650 30 450 543 920 800 600 743 125110 110330 115 600 800 58. Donnes techniques Solarline SW 26 et 30 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Performances et caractristiques! Modle Type SW-26 SW-30 Caractristiques Dimensions HxWxD Poids kg 195 200 Refrigerant Type Masse de remplissage kg 3.6 4 Presison de fonctionnement Mpa 4.2 4.2 Taille de connecteur hydraulique - chaud Pouces G1 1/2 G1 1/2 Taille de connecteur hydraulique - froid Pouces G1 1/2 G1 1/2 Evaporateur Type Condenseur Type Compresseur Type Performances Puissance thermique - chaud B0/W35 kW 26.0 31.0 Consommation lectrique (chauffage) kW 5.8 7.0 COP 4.48 4.43 Dbit - circuit chaud m3/h 4.47 5.33 Dbit - circuit froid m3/h 5.79 6.88 Puissance thermique - chaud W10/W35 kW 32.6 39.0 Consommation lectrique (chauffage) kW 5.92 7.14 COP 5.51 5.46 Dbit - circuit chaud m3/h 5.61 6.71 Dbit - circuit froid m3/h 7.65 9.13 Puissance thermique - froid W35/W7 kW 27.80 32.60 Consommation lectrique (refroidissement) kW 5.70 6.80 COP 4.88 4.79 Dbit - circuit intrieur m3/h 4.78 5.61 Dbit - circuit extrieur m3/h 5.76 6.78 Puissance Type Niveau de puissance sonore dB(A) 49 49 R410A Echangeur plaque braze Echangeur plaque braze 2 * Scroll Hitachi Truphas - compresseur Hitachi 960 x 600 x 800 59. Donnes techniques Solarline SW 26 et 30 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de puissance chaud SW-26 Heating Performance Conditions Curve 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve 60. Donnes techniques Solarline SW 26 et 30 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Courbe de puissance chaud SW-30 Heating Performance Conditions Curve 1=Flow temperature 35 Full load 2=Flow temperature 45 Full load 3=Flow temperature 55 Full load Heating performance curve 61. Donnes techniques Solarline SW 26 et 30 COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Chute de pression 62. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 4. Ballons de stockage et ECS 63. 4 REGULUS - R2BC storage water heaters - www.regulus.eu 3 - Technical Data and Dimensions of R2BC Models Tank code ................................................................................ a Tank total volume .................................................................... b Volume of the upper heating coil ............................................ c Volume of the lower heating coil ............................................. d Surface of the upper heating coil ............................................ e Surface of the lower heating coil ............................................. f Empty weight (transport) ......................................................... g Max. working temperature - tank ............................................ 95 C Max. working temperature - heating coils .............................. 110 C Max. working pressure - tank ................................................. 10 bar Max. working pressure - heating coils ................................... 10 bar DHW heating t =35 C (80/60 - 10/45) - upper coil ............. h DHW heating t =35 C (80/60 - 10/45) - lower coil .............. i Values in brackets are valid for tanks R2BC200 - R2BC400 Model R2BC 200 R2BC 300 R2BC 400 R2BC 500 R2BC 750 R2BC 1000 R2BC 1500 R2BC 2000 R2BC 3000 Tank code a 6481 6482 6483 6484 6485 5758 8478 8479 8474 Tank volume [l] b 200 300 400 500 750 1000 1500 2000 3000 Volume of the upper heating coil [l] c 4.9 5.6 5.6 5.6 13.4 14 14 17 22.5 Volume of the lower heating coil [l] d 4.9 9.5 11 11 13.4 14 26.5 28.5 31.5 Surface of the upper heating coil [m2 ] e 0.8 0.9 0.9 0.9 2.4 2.5 2.5 3 3.8 Surface of the lower heating coil [m2 ] f 0.8 1.5 1.9 1.9 2.4 2.5 4.2 4.5 5.2 Empty weight [kg] g 96 124 150 168 270 285 302 379 466 DHW heating t=35 C (80/60 - 10/45) - upper coil [l/h] ([kW]) h 680 (27.7) 760 (31.1) 760 (31.1) 760 (31.1) 2000 (81.3) 2090 (84.7) 2090 (84.7) 2510 (101.6) 3110 (126.0) DHW heating t=35 C (80/60 - 10/45) - lower coil [l/h] ([kW]) i 680 (27.7) 1280 (51.9) 1620 (65.8) 1620 (65.8) 2000 (81.3) 2090 (84.7) 3360 (136.2) 3600 (145.9) 4160 (168.6) Dimensions [mm] A 1265 1710 1690 1780 1870 2120 2285 2550 2980 B 929 1384 1411 1480 1460 1680 1825 2090 2430 C 629 914 891 949 890 890 1255 1310 1400 D 258 257 268 335 400 400 520 550 640 E 67 67 79 175 220 220 315 340 430 F 264 264 286 305 385 385 470 460 550 G 474 657 660 685 685 685 945 985 1075 H 579 849 846 865 835 835 1180 1160 1300 I 679 979 1011 985 990 990 1330 1450 1790 J 914 1214 1245 1285 1340 1340 1600 1825 2205 K 884 1141 1163 1235 1235 1235 1460 1650 2040 L 994 1294 1361 1335 1440 1440 1735 2000 2340 M 1164 1608 1581 1595 1590 1840 1935 2210 2550 N 610 610 710 760 950 950 1200 1300 1400 O 500 500 600 650 790 790 1000 1100 1200 A B C D E F H I J K L M G 6/4 G 5/4" (G 1") G 1/2 G 1/2 114 O 1 2 3 12 11 G 1/2 G G 1" (G 3/4") 4 5 6 7 8 9 10 30 Insulation N G 5/4 G 5/4 G 5/4 G 5/4 G 5/4" (G 1") G 5/4 168 S S 64. 4 3 - Technical Data and Dimensions Type - model PS200 N PS300 N PS500 N PS650 N PS800 N PS900 N PS1000 N PS1500 N PS2000 N PS3000 N PS4000 N PS5000 N Tank code a 10050 10053 10054 12311 10056 13474 10058 10060 10138 10139 10140 10141 Insulation code b 10107 10108 10120 12319 10123 13475 10125 10146 10147 10148 10149 10150 Fluid volume in tank [l] c 181 280 474 656 780 840 914 1505 2005 3022 3992 4999 Empty weight [kg] d 41 51 71 84 98 103 108 174 207 293 407 469 Tipping height [mm] e - - 1920 1970 1870 2020 2110 1940 2020 2160 2490 2970 Dimensions [mm] A 1326 1380 1890 1930 1820 1975 2070 1860 1930 2040 2335 2855 B 1068 1095 1590 1610 1430 1645 1680 1450 1485 1540 1835 2335 C 768 770 1130 1150 1050 1185 1220 1070 1105 1160 1375 1705 D 468 495 660 680 670 715 750 690 725 780 905 1075 E 388 415 535 555 580 590 625 600 635 690 780 925 F 308 335 425 425 425 390 500 425 425 520 600 670 G 168 195 200 220 290 255 290 310 345 400 445 445 H 650 750 800 900 1000 990 1000 1300 1450 1700 1800 1800 I 450 550 600 700 800 790 800 1100 1250 1500 1600 1600 J 340 450 500 600 700 700 700 1000 1100 1300 1500 1500 K 168 195 200 220 290 255 290 310 345 400 445 445 L 308 335 410 430 490 465 500 510 545 600 655 775 M 818 845 1245 1265 1130 1300 1335 1150 1185 1240 1490 1855 N 868 895 1360 1380 1210 1415 1450 1230 1265 1320 1605 2005 O 968 995 1460 1480 1310 1515 1550 1330 1365 1420 1705 2105 P 1068 1095 1590 1610 1430 1645 1680 1450 1485 1540 1835 2335 Tank code: .......................................................... a Insulation code: .................................................. b Total uid volume in tank: ................................... c Max. working pressure in tank: ........................... 4 bar Max. working temperature in tank: ..................... 95 C Empty weight: ..................................................... d Tipping height without insulation: ........................ e A B C D E F G H I J K L M N O P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 65. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 5. Panneaux Photovoltaques Tritec 66. Hareon Solar HR-Mono Modules with monocrystalline cells Hareon Solar Hareon Solar Technology Co., Ltd. was founded in 2004 and, today, it is one of the largest silicon-wafer pro- ducers in China. With its completion of the rst module production lines, Hareon Solar has at its disposal, since 2008, a fully-integrated production of PV components from ingots to modules. Reliable modules With an outstanding module and cell efciency, the modules of the HR-Mono series achieve very high ef- ciencies. Even with a reduced incidence of light, the modules realize a good performance yield thanks to their excellent low-light behaviour. Before and after lamination, every module is subjected to an electro- luminescence test. TRITEC quality controls n Regular quality controls in cooperation with the Fraunhofer Institute in Freiburg n External quality controls of production on location on behalf of TRITEC n Mechanical TV load test with the TRITEC mounting system TRISTAND Certicates and warranties n IEC 61215, IEC 61730, IEC 62716, IEC 61701, CE, UL Listed, CEC, VDE, RoHS, TV, PV CYCLE n Performance warranty: 12 years on 90 % and 25 years on 80 % of the nominal power n 10-year product warranty n European warranty processing The solar modules manufactured by Hareon Solar have been tested and certied by all recognised test institutes world- wide. The Ningbo plugs allow easy wiring of the modules, while the specically developed module frames withstand loads of up to 5400 N/m. ................................................................................................................................................................... Framed Modules SOLAR MODULES ................................................................................................................................................................... 67. Art. No. 0101356 0101354 0101355 0101437 Model Hareon HR-195W Mono Hareon HR-200W Mono Hareon HR-205W Mono Hareon HR-250W-18/Cbb Mono Nominal power 195 W +5 W, -0 W 200 W +5 W, -0 W 205 W +5 W, -0 W 250 W +5 W, -0 W Max. system voltage 1000 V 1000 V 1000 V 1000 V Operating voltage 36.94 V 37.39 V 37.83 V 30.59 V Operating current 5.28 A 5.35 A 5.42 A 8.17 A Open circuit voltage 45.28 V 45.50 V 45.68 V 37.59 V Short circuit current 5.58 A 5.79 A 5.90 A 8.79 A Temp. coefcient open circuit voltage -0.31 %/K -0.31 %/K -0.31 %/K -0.31 %/K Temp. coefcient short circuit current 0.047 %/K 0.047 %/K 0.047 %/K 0.047 %/K Temp. coefcient nominal power -0.41 %/K -0.41 %/K -0.41 %/K -0.41 %/K Reverse current load 15 A 15 A 15 A 15 A Max. string protection 15 A 15 A 15 A 15 A Number of bypass diodes 3 pc. 3 pc. 3 pc. 3 pc. Cells per module 72 pc. 72 pc. 72 pc. 60 pc. Cell dimensions (L / W) 125 mm / 125 mm 125 mm / 125 mm 125 mm / 125 mm 156 mm / 156 mm Cell connection 2 bus bar 2 bus bar 2 bus bar 3 bus bar Cell technology Monocrystalline silicon Monocrystalline silicon Monocrystalline silicon Monocrystalline silicon Connection Ningbo, cable 900 mm each (+ / ) Ningbo, cable 900 mm each (+ / ) Ningbo, cable 900 mm each (+ / ) Ningbo, cable 1000 mm each (+ / ) Mounting frame Anodized aluminium Anodized aluminium Anodized aluminium Black anodized aluminium Back sheet White White White Black Dimensions (L / W / H) 1580 mm / 808 mm / 45 mm 1580 mm / 808 mm / 45 mm 1580 mm / 808 mm / 40 mm 1636 mm / 992 mm / 45 mm Weight 16.0 kg 16.0 kg 15.8 kg 19.5 kg Number per container 616 pc. 616 pc. 700 pc. 616 pc. Max. load 5400 N/m 5400 N/m 5400 N/m 5400 N/m Performance warranty * 12 / 25 years 12 / 25 years 12 / 25 years 12 / 25 years Product warranty 10 years 10 years 10 years 10 years Norms IEC 61215, IEC 61730, CE, UL Listed, CEC, RoHS, ISO 9001, ISO 14001, TVdotCOM-ID: 0000026038, MCS, PV CYCLE IEC 61215, IEC 61730, CE, UL Listed, CEC, RoHS, ISO 9001, ISO 14001, TVdotCOM-ID: 0000026038, MCS, PV CYCLE IEC 61215, IEC 61730, CE, UL Listed, CEC, RoHS, ISO 9001, ISO 14001, TVdotCOM-ID: 0000026038, MCS, PV CYCLE IEC 61215, IEC 61730, CE, UL Listed, CEC, RoHS, ISO 9001, ISO 14001, TVdotCOM-ID: 0000026038, MCS, PV CYCLE * - Manufacturer's performance warranty: 12 years on 90 % / 25 years on 80 % of the minimal nominal power under standard testing conditions (STC) The electrical specications are under standard test conditions (STC) of irradiance of 1000 W/m, spectrum of 1.5 air mass and cell temperature of 25C. ................................................................................................................................................................... SOLAR MODULES Framed Modules ................................................................................................................................................................... TRITEC Group www.tritec-energy.com | 20130529-1 | The content of this datasheet is subject to change without prior notice 68. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 6. Panneaux Photovoltaques Meyer Burger (Suisse) 69. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 7. Offres types 70. GAMME DE PRIX SOLARLINE AROTHERMIQUE Le kit Solarline comprend les lments mentionns ci-dessous : Le tableau ci-dessous rsume les prix au kW ainsi que les prix lis aux diffrentes puissances Puissance thermique Prix matriel Prix matriel + Pose Prix (CHF/W thermique) 10 CHF 22'671.50 CHF 45'117.00 CHF 2.27 13 CHF 26'172.50 CHF 47'899.00 CHF 2.01 15 CHF 29'166.67 CHF 48'764.00 CHF 1.94 20 CHF 30'198.00 CHF 51'781.60 CHF 1.51 30 CHF 38'615.33 CHF 58'000.00 CHF 1.29 32 CHF 59'840.00 CHF 80'000.00 CHF 1.87 64 CHF 80'000.00 CHF 100'000.00 CHF 1.25 24.04.2014 PAC arothermique Pompe de circulation Vanne mlangeuse motorise de zone Vanne 3 voies motorise pour lECS Ballon dECS Ballon de stockage Vase dexpansion Sondes de tempratures de ballon Sonde de temprature intrieure Panneaux photovoltaques avec systme de pose Coffret lectronique Solarline avec cran de mesure et rglage Cbles pour les panneaux photovoltaques Mise en service Livraison sur place Prix HT 0 20'000 40'000 60'000 80'000 100'000 120'000 SA-10 SA-13 SA-15 SA-20 ou 2*SA-10 2*SA-15 SA-32 SA-64 Titredel'axe Prix Arothrmique Sans installation Avec Installation COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] 71. GAMME DE PRIX SOLARLINE GOTHERMIQUE Le kit Solarline comprend les lments mentionns ci-dessous : Le tableau ci-dessous rsume les prix au kW ainsi que les prix lis aux diffrentes puissances Puissance thermique Prix matriel Prix matriel + Pose Prix (CHF/W thermique) 10 CHF 24'421.67 CHF 43'662.50 CHF 2.44 13 CHF 26'177.00 CHF 46'000.00 CHF 2.01 15 CHF 30'280.00 CHF 51'000.00 CHF 2.02 20 CHF 40'650.00 CHF 61'000.00 CHF 2.03 26 CHF 50'000.00 CHF 70'000.00 CHF 1.92 30 CHF 61'756.00 CHF 82'000.00 CHF 2.06 60 CHF 80'000.00 CHF 101'000.00 CHF 1.33 Prix HT PAC gothermique Pompe de circulation Vanne mlangeuse motorise de zone Vanne 3 voies motorise pour lECS Ballon dECS Ballon de stockage Vase dexpansion Sondes de tempratures de ballon Sonde de temprature intrieure Panneaux photovoltaques avec systme de pose Coffret lectronique Solarline avec cran de mesure et rglage Cbles pour les panneaux photovoltaques Mise en service Livraison sur place 0 20'000 40'000 60'000 80'000 100'000 120'000 SW-10 SW-13 SW-15 SW-20 SW-26 SW-30 SW-60 Titredel'axe Prix Gothermique Sans installation Avec Installation COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] 72. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 8. Rfrences de clients 73. INSTALLATIONS COSSECO 74. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation 9. Articles de presse 75. ARTICLE BATIMAG (avril 2011) 76. ARTICLE - EFFICIENCE 21 (Automne 2012) 77. ARTICLE FRIBOURG NETWORK (2014) 78. Energy and Buildings 66 (2013) 7787 Contents lists available at ScienceDirect Energy and Buildings journal homepage: www.elsevier.com/locate/enbuild Economic and energy analysis of three solar assisted heat pump systems in near zero energy buildings Richard Thygesen , Bjrn Karlsson Mlardalen University, School of Business, Society and Engineering, Box 883, 721 23 Vsters, Sweden a r t i c l e i n f o Article history: Received 16 May 2013 Accepted 11 July 2013 Keywords: Solar collector Photovoltaics Ground source heat pump Near zero energy building Energy system simulation a b s t r a c t The European Unions directive of the energy performance of buildings makes energy systems with local energy generation interesting. To support local energy generation the government has appointed a commission to investigate the possibility to implement net metering for grid connected PV-systems. In this paper three different systems are simulated and analyzed with regards to economics and energy: a PV-system and a heat pump (alternative 1), a heat pump and a solar thermal system (alternative 2) and a heat pump, a PV-system and a solar thermal system (alternative 3). System alternative 1 is protable with daily net metering and monthly net metering and unprotable with instantaneous net metering. The solar electrical fraction of the system is 21.5%, 43.5% and 50%, respectively. System alternative 2 is unprotable and has a solar electricity fraction of 5.7%. System alternative 3 is unprotable and has a solar electricity fraction of just below 50. The conclusion is that a PV system in combination with a heat pump is a superior alternative to a solar thermal system in combination with a heat pump. 2013 Elsevier B.V. All rights reserved. 1. Introduction In the Europe union (EU-27) the household sector accounts for almost 27% of the total European nal energy consumption [1]. This is an important reason for the European commission to adopt the directive on the energy performance of buildings [2] as one of several measures to reach its 202020 goal. The European Unions directive on the energy performance of buildings will lead to more local energy generation in the future and more energy efcient buildings. Solar energy is regarded as one of the most promising ways for local energy generation. Partly because of this the Swedish government has appointed a commis- sion which will produce proposals on how to facilitate the use of net metering for locally produced electricity in buildings. In Sweden today one common way of reducing the amount of purchased energy in new buildings is to install a ground source heat pump in combination with a well-insulated building envelope and mechanical ventilation with heat recovery. In Sweden approx- imately 340,000 ground source heat pumps has been installed the last decade according to the Swedish Heat Pump Association [3]. Corresponding author. Tel.: +46 21 103182; fax: +46 21 101480. E-mail address: [email protected] (R. Thygesen). Because of this it will be more common with energy systems that combine solar energy with ground source heat pumps and heat recovery ventilation. Earlier studies with solar assisted heat pumps have mainly focused on complex systems with PV/T hybrids or solar thermal collectors acting as the source for the heat pump evaporator [46]. Other studies have focused on standard heat pumps and solar ther- mal systems [7]. In this paper three less complex solar assisted heat pump sys- tems will be simulated in the program Trnsys [8] and analyzed with regards to economics and energy consumption. The different sys- tems are PV-system, solar thermal system and a combination of a PV-system and a solar thermal collector system. The aim of the work presented in this article is to nd the sys- tem which is most cost effective and has the highest solar energy fraction. 2. Methodology The energy simulations are performed in the transient simula- tion program Trnsys. The simulation interval is set to 3 min and two years, 17,520 h, are simulated. The Trnsys models are built up with so called decks in Simulation studio which is the graphical user interface of Trnsys. Each Trnsys model consists of identical decks with exception of the different solar energy systems analyzed. A short description 0378-7788/$ see front matter 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.enbuild.2013.07.042 79. 78 R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 Table 1 Main Trnsys type in the simulation deck. Trnsys type Description Comment Type 56 Multi zone building Type 927 Ground source heat pump Based on external data le for Premiumline EQ C6 Type 534 Heat storage tank Heat pump internal tank Type 557a Borehole Type 194 PV-module 5 parameter model Type 539 Flat plate solar collector Type 760 Airair heat recovery of the most important types used in this work is summarized in Table 1. All results from the energy simulations are exported and further processed and used in the economic calculations. The analysis is based on the annuity method because of its ability to compare systems with different economic lifespans. The revenues from the different system alternatives are con- verted to net present values by multiplying the revenues with the discount factor (DF) dened by: DF = 1 (1 + i) t (1) The accumulated net present value (NPV) revenues are then con- verted to an annuity dened by: (NPV Ci) i (1 + i) z (1 + i) z 1 (2) where i is the interest rate, t is the economical lifespan and Ci is the investment cost. In the economic calculations the investment cost only includes the solar energy systems and not the ventilation heat recovery and ground source heat pump systems. A sensitivity analysis is done in order to evaluate the impact of different electricity price changes on systems protability. 3. The simulated building and technical installations 3.1. The building The simulated building consists of one zone and one story with a living space of 138 m2 which is maintained at 21 C. The building has oor heating embedded in the building foundation which con- sists of a concrete slab on grade with a total insulation thickness of 300 mm. In the building walls the insulation is 350 mm thick and the roof has an insulation thickness of 370 mm. The U-values of the different building elements can be seen in Table 2. Four inhabitants, two children and two adults, live in the build- ing. The energy system of the building consists of three main parts: household electricity, the production of domestic hot water and space heating and heat recovery ventilation. The part of the three systems investigated that are identical to each other will be Table 2 U-values for the different building components used in the simulation. Building component U-value (W/(m2 , K)) Ceiling 0.106 Outer walls 0.102 Ground oor 0.103 Windows 0.81 described in this section. Another important factor is how differ- ent measuring schemes inuence the size and the economics of the PV-system. The different schemes will be explained in detail in Section 4. The total energy demand for the building with household electricity included is 19,880 kWh/year. The same building with a ventilation heat recovery unit installed has a demand of 16,920 kWh/year purchased energy and with ventilation heat recovery and ground source heat pump the purchased energy demand is 10,157 kWh/year. In Fig. 1 the energy demands per month is shown and in Table 5 the building total energy demand for the different combinations of technical installations are sum- marized. 3.2. Heat pump The heat pump used in the simulations is based on a commer- cial available model made in Sweden by Bosch Termotechnik AB. The model used is an IVT Premiumline EQ C6 which has a heating capacity of 5.8 kW. It has a 225 L internal double jacketed storage tank with an inner domestic hot water tank of 185 L. The domestic hot water production is prioritized which means that no heat is supplied to the building when the temperature in the tank is below 47 C which is the set point temperature minus a 3 C hysteresis. The temperature probe which is measuring the domes- tic hot water is located approximately 20 mm from the bottom of the tank and on the outside of the tank. A zone valve switches the heated media to either the outer compartment of the domestic hot water tank or to the oor heating system. Once every week the domestic hot water temperature is raised to 65 C to avoid growth of the Legionella bacteria. This is partly done with the heat pumps internal electric heater. The heat pump heater is limited to 3 kW which is one-third of the heater potential and will only be active when the domestic hot water is raised to 65 C. The domestic hot water consumption in the building is 66 L per day and person and the annual energy amount needed for produc- tion of domestic hot water is 4675 kWh. The tapping cycle is based on EN 16147:2011 [9] tapping cycle M which is a cycle with 23 draw offs a day. Previous studies have shown that the number of tapings and the time of occur- rence are of importance for the storages performance as shown by Fiala [10]. An evaluation of different tapping cycles will be done in the future to improve the domestic hot water part of the model. The required temperature lift of the main water varies with the season, in summer the minimum lift is 42 C and in winter the maximum lift needed is 49 C. The variations can be seen in Fig. 2. The heat pump is connected to a 150 m deep borehole on the heat pump cold side and to the building oor heating system on the hot side. It is dimensioned for monovalent operation which means that it is able to cover 100% of the building heat load. The borehole is dimensioned so the exiting uid temperature never is below 0 C. The heating is regulated by a linear temperature curve based on the heating system forward ow temperature and outdoor tem- perature. Maximum forward ow temperature to the oor heating system is 33.5 C. The temperature differences are within the manufacturers rec- ommended 25 C for the cold side uid and 710 C for the hot side uid. Two circulation pumps are integrated in the heat pump. On the hot side the circulation pump is frequency controlled and the speed is regulated to keep the temperature difference over the heating 80. R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 79 Fig. 1. Total building energy demands without technical installations, with ventilation heat recovery and with ventilation heat recovery in combination with a ground source heat pump. system at a constant 7 C. On the cold side the circulation pump is set to a xed speed. The reason for having a frequency controlled pump on the hot side is because it is in constant operation during the heating sea- son. The circulation pump on the cold side is only active when the compressor is active. When the ambient temperature rises above 12 C the heat pump is switched to summer mode and the circulation pump is only in operation when domestic hot water is produced. This means that no heating is provided to the building until the ambient temperature is below 12 C. 3.3. Heat recovery ventilation The system contains two fans, with an installed power of 170 W each, and a rotating heat exchanger with an efciency of 80%. No electrical anti freezing system is installed in the ventilation system. The supply air is maintained at 17 C when possible. The ventilation ow rate is set to 0.35 l/s, m2 living area which is the minimum requirements according to the Swedish building regulations [11]. During summer no heat exchange will occur even though the ambient temperature drops below 17 C. Fig. 2. Annual variations of the required temperature lift of the main water to achieve a domestic hot water temperature of 55 C. 81. 80 R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 Table 3 Data for from CNBM Solars polycrystalline 230 W module at standard test conditions. Maximum power per module 230 W Tilt angle of modules 70 Open circuit voltage 36.9 V Voltage at maximum power point 30.2 V Short-circuit current 8.31 A Current at maximum power point 7.62 A Table 4 Data taken from Solar Keymark certicate for the aquasol at plare collector. Collector efciency related to aperture area 0.78 a1 3.14 W/(m2 , K) a2 0.019 W/(m2 , K2 ) Effective thermal capacity 7470 kJ/(m2 , K) Table 5 Building total energy demand with different combinations of technical installations. Building Total building energy demand incl. household electricity (kWh) Without any technical installations 19,880 With heat recovery ventilation 16,920 With heat recovery ventilation and ground source heat pump 10,157 3.4. PV-system The system is based on 21 pieces 230 W polycrystalline modules manufactured by CNBM solar and has an installed peak power of 5190 kW. The modules are tilted 70 from the ground and are facing south. No objects that can shade the modules are present around the building. The system is grid connected via an inverter to one of the build- ings incoming electrical phases. No battery storage is used. Table 3 summarizes the most important data of the PV-system. 3.5. Solar thermal system The solar thermal system is based on two at plate solar collec- tors manufactured by the Swedish company Aquasol. The aperture area is 2.1 m2 per at plate collector. The total area of the solar thermal system is dimensioned for a storage volume of 225 L. The system is connected to the tank via a coiled tube heat exchanger placed in the bottom of the tank. It is regulated so that the circulation pump starts when the tem- perature difference between the water in the solar collector and in the bottom of the tank is 3 C and it stops when the difference is 1 C. If the temperature in the tank reaches 95 C the circulation pump stops. In Table 4 the most important data taken from the Solar Keymark certicate are summarized. 3.6. Household electricity The annual electricity consumption is based on measured val- ues taken from a one family building with four inhabitants where two are adults and two are children. The annual consumption is 5155 kWh with a small monthly variation [12], see Fig. 3. 4. Metering schemes The consumer price of electricity consists of the cost for energy, energy tax, sales tax and grid cost. The energy cost is around 40% of the total cost. When the PV-system delivers less energy than the total load it will lower the need for purchased electricity. This means that all these four components are saved. When the PV sys- tem delivers more energy than is used in the building the surplus is exported to the grid. The price of exported electricity is determined by market price for electric energy. This means that it is much more favorable to save energy than to export energy. However, if a kWh is dened as saved or exported depends on the metering scheme. Three different schemes will be investigated in this article: instantaneous metering, daily net metering and monthly net metering. The length of the net metering period affects the amount of PV-electricity regards as saved or exported. The saved electric- ity fraction is increasing with the length of the metering period, so a larger PV-system can be installed without the need to export and sell electricity to the grid. Technically daily and monthly net metering means that the grid is used as storage. With instantaneous metering the generated PV electricity has to be used at once in the building. If the PV electricity generation is greater than the building electricity demand the surplus will be exported to the electricity grid and sold. Daily net metering is a more attractive option for the building owner where the generated PV electricity for a whole day is settled against the building electricity demand for the same day, i.e. the consumer only pays for the net. With this scheme the PV-system surplus is exported to the electricity grid but not sold. The surplus accumulated at daytime is settled against the electricity demand later the same day when no or little PV electricity is generated. If the PV-electricity generation is larger than the building electricity demand over the whole day, i.e. there is a positive daily net, the net surplus is sold to an electricity company. The same principle as for daily net metering also applies for monthly net metering but the PV electricity generation and the electricity demand are settled monthly. Fig. 4 shows the saved electricity in the building energy system with heat pump and heat recovery according to Fig. 1 in relations to installed PV-system size and different metering schemes. As can be seen in Fig. 4 the slope of the curve for saved electricity in the building with instantaneous net metering is starting to decline at 400 W and this is because a larger PV-system gives a surplus that have to be exported to the grid. For daily and monthly net metering a larger peak power can be installed before a surplus is exported to the grid and this also gives a larger fraction of saved electricity in the building. The performance of an energy system for a single family build- ing consisting of a heat pump supported by PV-modules and solar collectors are analyzed for the different metering periods. 5. Differences between solar thermal systems and PV-systems in combination with ground source heat pumps A PV-system in combination with a heat pump has a better match between heat demand and output from the PV-system than a solar thermal system. The heat pump has a higher monthly coef- cient of performance during the winter months because the heat supplied to the building oor heating system has a lower tem- perature and is a larger portion of the total heat supplied to the building than in summer. The heat supplied in summer is almost only for domestic hot water production. Fig. 5 shows the monthly coefcient of performance. This means that the PV-electricity supplied to the heat pump during winter is utilized more efciently than during summer, i.e. 82. R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 81 Fig. 3. Monthly variation of the household electricity consumption. the same amount of electricity to the heat pump gives a larger heat output in winter than in summer, see Fig. 6. Another advantage for the PV-module is that it is not negatively affected by low ambient temperatures and has the same efciency independent of the radiation intensity. A at plate solar collector output depends on the absorbed radiation to be larger than the col- lector heat losses. The radiation level where the collector heat losses are equal to the absorbed radiation is called the critical radiation level as shown in [13]. 6. Energy analysis of solar assisted heat pump systems The three systems will be described in detail in this section. All general parts of the building energy system in Section 3 are identical for all three systems. The main parts of the different systems can be seen in Fig. 7. 6.1. Alternative 1: ground source heat pump system in combination with 5.19 kWp PV-system Three different metering schemes will be investigated in this alternative: instantaneous metering, daily net metering and monthly net metering. The PV-system is dimensioned so that surplus of PV-electricity is avoided. Fig. 8 demonstrates how this principle is used for design- ing the system with monthly net metering. The chosen PV-power to 5.19 kWp will give balance between load and production during June. During all other months electric energy has to be supplied. Fig. 4. Saved electricity in the building energy system in relation to installed PV peak power with different periods for net metering. The PV-modules are tilted 70 . 83. 82 R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 Fig. 5. Ground source heat pump monthly coefcient of performance. Monthly net metering is expected to be introduced in Sweden during 2013. Therefore this alternative is used as the reference in the overall analysis. It will generate and save 5093 kWh of electric- ity per year without overproduction which means that the building energy demand is reduced to 5064 kWh or 36.7 kWh/year and m2. The solar electricity fraction in this alternative is 50%. 6.1.1. Alternative 1: GSHP in combination with 5.19 kWp PV-system with instantaneous metering In this metering alternative it is possible to use 2182 kWh of PV generated electricity in the building and 2908 kWh is exported and sold to an electricity company. When the PV generation used in the building is deducted the building electricity demand is reduced to 7975 or 58 kWh/year and m2 living area. Fig. 9 shows the monthly building electricity with and without the PV generation deducted. The fraction of solar electricity in the building energy system is 21.5%. 6.1.2. Alternative 1: GSHP in combination with 5.19 kWp PV-system with daily net metering In this metering alternative it is possible to use 4418 kWh in the building and 672 kWh is exported and sold to an electricity company. When the PV generation, possible to use in the building to limit the electricity demand, is deducted the building electricity demand is reduced to 5739 or 41.6 kWh/year and m2 living area. Fig. 9 shows the monthly building electricity with and without the PV generation deducted. Fig. 6. Monthly output of a 1 m2 PV-module in combination with a heat pump and a 1 m2 at plate solar collector. 84. R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 83 Fig. 7. Main components in alternative 1 with ground source heat pump and PV-system, alternative 2 with ground source heat pump and solar thermal system and alternative 3 which is a combination of alternatives 1 and 2. Fig. 8. The building energy demand and PV-generation with monthly net metering and 5.19 kWp PV-system and the PV-modules in 70 tilt. 85. 84 R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 Fig. 9. Total building electricity demand with and without PV-system with instantaneous metering, daily net metering and monthly net metering. The fraction of solar electricity in the building energy system is 43.5%. 6.1.3. Alternative 1: GSHP in combination with 5.19 kWp PV-system with monthly net metering In this alternative all of the 5093 kWh PV generated electric- ity is used to limit the building electricity demand. When the PV generated electricity is deducted the building electricity demand is reduced to 5064 or 36.7 kWh/year and m2 living area. Fig. 9 shows the monthly building electricity with and without the PV generation deducted. The fraction of solar electricity in the building energy system is 50%. 6.2. Alternative 2: ground source heat pump system in combination with at plate solar collector system Previous studies have found that turning the heat pump off and using the solar collectors during the summer period for domestic hot water production is the best way of combining solar collectors and commercial available ground source heat pumps as can be seen in [7]. In [7], Kjellsson concluded that using the solar heat for charging a single borehole is very ineffective. If the borehole is deep enough the natural recharge is enough to cover the energy outtake during the heating season. The solar thermal system generates 1428 kWh/year for the pro- duction of domestic hot water. If the ground source heat pump would have to produce the same amount of domestic hot water with the same prerequisites the electricity needed would be the energy generated by the solar thermal system divided with the heat pump coefcient of performance. The generation of 1428 kWh of heat from the solar thermal sys- tem resulted in saving of 537 kWh due to the decreased operation of the heat pump. The annual COP of the heat pump increased with 0.11 units to 3.09 and the annual operating time is decreased by 4051452 h. As can be seen in Fig. 10 the saved electricity due to the at plate collectors is small. This is because it is difcult to combine heat pumps with systems that compete with the heat pumps operation, i.e. domestic hot water production or space heating. The annual building electricity demand including household electricity is decreased from 10,157 or 73.6 kWh/m2 living area to 9410 or 68 kWh/m2 living area which is a decrease of 748 kWh or 5.4 kWh/m2 living area. The decrease in the annual building electricity demand is higher than the contribution from the at plate solar collector system because of the higher heat pump coefcient of performance. The fraction of solar energy in the building energy system is 5.7%. 6.3. Alternative 3, ground source heat pump system in combination with at plate solar collector system and PV-system with monthly net metering The third system is a combination of the rst two with one important difference. The PV-system will be smaller because the at plate solar collector system decreases the building total elec- tricity demand during summer months and it is this demand the PV-system is dimensioned against. Therefore the system needs to be smaller to avoid overproduction. The size of the PV-system in this alternative is 4.60 kWp which is a reduction of 11.3% in comparison with alternative 1. The PV-system will generate 4058 kWh electricity per year and the at plate solar collector system will generate 1428 kWh of heat which will save 537 kWh of electricity. The building electricity demand including household electricity for this alternative will decrease from 10,157 to 5351 kWh/year or 38.8 kWh/m2, living area. Fig. 11 shows the building electricity demand in comparison to a system with only ground source heat pump and a system as in alternative 1. The solar electricity fraction of the building energy system is 49% which is slightly lower than the alternative with only a PV-system. 7. Economic analysis of solar assisted heat pump systems The discount rate in the calculations is 6% and the electricity price is assumed to increase by 4.7% each year with a starting price 86. R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 85 Fig. 10. Total building electricity demand with and without at plate collector system. of 0.18 D /kWh. This assumption is based on historical changes of the electricity price in Sweden during the past 10 years [14]. PV-module and solar collector degradation has not been taken into account in the calculations. 7.1. Alternative 1: ground source heat pump system in combination with PV-system The investment cost for the PV-system is 14,443 or 2783 D /kWp. The economic lifespan of the PV-system is assumed to be 20 years with regards to inverter lifespan. The annuity of this alternative with continuous metering is 427 D /year and the system is unprotable. The annuity with daily net metering is 22 D /year and the system is protable. The annuity with monthly net metering is 106 D /year and the system is protable. 7.2. Alternative 2: ground source heat pump system in combination with solar thermal system The at plate solar collector investment cost is 4121 or 981 D /m2 collector aperture area. The economic lifespan of the at plate collector system is assumed to be 25 years. The annuity of this alternative is 166 D /year which means that the system is unprotable. Solar collector systems used for producing domestic hot water in combination with heat pumps for space heating and domestic Fig. 11. Total building electricity demand with and without at plate collector system in combination with PV-system. 87. 86 R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 Fig. 12. Sensitivity analysis of annual electricity price change. hot water production will be protable in Sweden if the system price is reduced by approximately 50%. 7.3. Alternative 3: ground source heat pump system in combination with at plate solar collector system and PV-system with monthly net metering The economic lifespan of the system as a whole is assumed to be 20 years. The investment cost for the at plate solar collector system and the PV-system is 16,908 D . The annuity of this alternative is 212 D /year which means that the system is unprotable with monthly net metering. 7.4. Sensitivity analysis of electricity price change One of the largest uncertainties in this paper is the assumption of the price for electricity. As stated earlier the assumption is based on historical changes of the electricity price in Sweden. The anal- ysis shows that the increase in price must be almost 4% each year for system alternatives 1 with monthly net metering and 4.5% for system alternative 1 with daily net metering if the systems are to be protable. All other alternatives need a price change much larger than 5%, see Fig. 12. 8. Results The total building electricity demand with the different solar energy systems can be seen in Table 6. System alternative 1 with instantaneous metering is unprot- able. The solar electricity fraction of this system is 21.5%. System alternative 1 with daily net metering is protable and yields a solar electricity fraction of 43.5%. System alternative 1 with monthly net metering is an economic feasible way of reaching high solar electricity fractions in a building energy system. The solar electricity fraction is 50%. System alternative 2, with ground source heat pump and solar collectors, is unprotable and will reach a solar electricity fraction of 5.7%. Table 6 Building electricity demand with different combinations of solar energy systems. System alternative Building electricity demand (kWh) Building electricity demand per square meter living area (kWh/m2 ) 1. GSHP with PV-system (instantaneous metering) 7975 58 1. GSHP with PV-system (daily net metering) 5739 41.6 1. GSHP with PV-system (monthly net metering) 5064 36.7 2. GSHP with at plate solar collector system 9410 68 3. Alternative 1 + 2 (monthly net metering) 5351 38.8 Table 7 Annuity of the different system alternatives. System alternative Annuity (D /year) 1. GSHP with PV-system (instantaneous metering) 427 1. GSHP with PV-system (daily net metering) 22 1. GSHP with PV-system (monthly net metering) 105 2. GSHP with at plate solar collector system 166 3. Alternative 1 + 2 (monthly net metering) 212 System alternative 3 is unprotable and will have a slightly lower solar electricity fraction, 49%, than alternative 1. 9. Discussion and conclusions As can be seen in Table 7 only alternative 1 with daily and monthly net metering is protable. Alternative 1 with instanta- neous metering give a smaller decrease in the building electricity demands and export and sell larger amounts of the PV generated electricity than the protable systems. This is the reason why alter- native 1 with daily net metering is less protable than the same 88. R. Thygesen, B. Karlsson / Energy and Buildings 66 (2013) 7787 87 alternative with monthly net metering and that the same alterna- tive with instantaneous metering is unprotable. This is explained in detail in Section 3.4. All systems are sensitive to changes in the assumed electricity price but systems alternative 2 with a solar thermal system is the least sensitive. That is because the amount of saved electricity is low in that alternative and the reason for this is explained later in this section. The conclusion is that the most effective way of using PV gener- ated electricity is by reducing the amount of electricity needed to be purchased. The reduction of purchased electricity by a PV-system and a heat pump system is a viable way of making the building more energy efcient. As can be seen in Sections 5 and 6 the reduction of pur- chased electricity can be large with relatively small investments. If monthly net metering is introduced in Sweden it is likely that the installation of a PV-system will be a popular way of making buildings more energy efcient. The combination of heat pumps and solar thermal in a system, as in system alternative 2 and 3, where the heat pump produce domestic hot water is ineffective. The heat pump needs for example approximately 1 kWh of purchased electricity to produce 3 kWh of domestic hot water. When the solar collector system produces 3 kWh in a system like this the saving is the electricity the heat pump would have used to produce the same amount of domestic hot water, i.e. 1 kWh. Because of this the savings from a solar collector system is 1/3 in a system with a heat pump in comparison to other heating and domestic hot water systems. This is not a problem only for solar collector systems but for almost all complementary systems. On the other hand the combination of a PV-system with a heat pump that produces domestic hot water is a perfect match where the two systems do not compete for the same domestic hot water load. In fact the heat pump electricity need during the summer months in combination with the household electricity load make it possible to install larger PV-systems. The conclusion is that a system with a ground source heat pump in conjunction with a PV-system is the most effective system with regards to energy and economics. 10. Further work System alternative 1 with a PV- and a ground source heat pump will be studied further and the simulation model will be enhanced. Acknowledgement The work was funded by the Swedish Effsys+ Program, which is primarily nanced by the Swedish Energy Agency. References [1] European Commission, EU Energy in Figures, Statistical Pocketbook, 2012, http://ec.europa.eu/energy/publications/doc/2012 energy gures.pdf [2] European Commission, Energy Performance of Buildings Directive, 2012, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:081: 0018:0036:EN:PDF: 2012:081:0018:0036:EN:PDF. 2012-08-27. [3] Swedish Heat Pump Association (SVEP), 2012, http://www.svepinfo.se/ (in Swedish). [4] G. Xu, et al., Simulation of a photovoltaic/thermal heat pump system having a modied collector/evaporator, Solar Energy 83 (2009) 19671976. [5] H. Chena, et al., Numerical study on a novel photovoltaic/thermal heat pump system, Energy Procedia 12 (2011) 547553. [6] S. Eicher, et al., Solar assisted heat pump for domestic hot water production, Energy Procedia 30 (2012) 571579. [7] E. Kjellsson, Solar Collectors Combined with Ground-Source Heat Pumps in Dwellings, Analyses of System Performance, Lund University, Sweden, 2009, Ph.D. Thesis. [8] S.A. Klein, et al., TRNSYS 17, A TRansient SYstem Simulation Program, User Manual Solar Energy Laboratory, University of Wisconsin-Madison, Madison, 2010. [9] European Committee for Standardization, EN 16147:2011 Heat Pumps with Electrically Driven Compressors Testing and Requirements for Marking of Domestic Hot Water Units, 2011. [10] D. Fiala, et al., Inuence of the domestic hot-water daily draw-off pro- le on the performance of a hot-water store, Applied Energy 83 (2006) 749773. [11] Swedish National Board of Housing, Building and Planning, Building Reg- ulations, 2012, http://www.boverket.se/Om-boverket/Webbokhandel/ Publikationer/2008/Building-Regulations-BBR/ [12] Sollentuna Energi, Measurment Data Obtained from the Electricity Grid Oper- ator, Sollentuna Energi, 2008. [13] J.A. Dufe, W.A. Beckman, Solar Engineering of Thermal Processes, third ed., John Wiley & Sons Inc., 2006. [14] Statistics Sweden, Prices on Electricity and Transmission of Electricity (Network Tariffs), 2013, http://www.scb.se/Pages/ProductTables 6441.aspx (2013-02- 05). 89. Jenni Energietechnik AG Lochbachstrasse 22 Postfach CH-3414 Oberburg bei Burgdorf Schweiz T +41 34 420 30 00 F +41 34 420 30 01 [email protected] www.jenni.ch La transition nergtique est une question de stockage Le terme de transition nergtique dcrit le passage des nergies conventionnelles qui sont gnralement polluantes, aux nergies renouvelables plus propres. Ainsi le stockage de lnergie est un lment fondamental dans la russite de la transition nergtique. Les nergies conventionnelles comme le mazout, le gaz, le charbon, lnergie atomique sont stockables et utilisables la de- mande. Ceci est un avantage important et permet de fournir lnergie en fonction de la consommation. En revanche, la produc- tion dnergie renouvelable nest pas constante. Des variations saisonnires (t/ hiver), journalires (jour/ nuit) et mtorolo- giques conduisent une production irrgulire qui volue rapidement, cest pourquoi le stockage de lnergie est indispen- sable. Actuellement, il est techniquement possible de fournir une part importante dnergie en utilisant des techniques propres. Mais cela ne sert rien davoir suffisamment dnergie si celle-ci est disponible au mauvais moment. Le dfi est donc de pou- voir stocker cette nergie pour combler les priodes de faible production. Aujourdhui plusieurs technologies de stockage sont utilises. La liste ci-dessous numre les principales technologies sur le march : Les batteries Lithium-Ion sont trs rpandues par exemple dans les appareils lectroniques comme les appa- reils photos et les tlphones portables. Elles sont aussi utilises dans les voitures lectriques actuelles. Le prix pour le stockage de lnergie est trs lev. Le cycle de recharge et la dure de vie sont trs limits. Dans lensemble, nous considrons que le potentiel de cette technologie de stockage est surestim. Les batteries au plomb sont utilises principalement dans les voitures conventionnelles. Avec cette technolo- gie, on ne peut stocker quenviron 1 kWh. Lutilisation grande chelle de ces batteries pour le stockage dlectricit photovoltaque produite par une maison familiale nest pas approprie en raison de son cot lev et de la disponibilit limite des matires premires ncessaires sa fabrication. Les centrales de pompage-turbinage reprsentent lheure actuelle la seule possibilit industriellement ap- plicable de stocker en grande quantit de llectricit. La production excdentaire dlectricit des jours enso- leills est stocke par pompage pour tre turbin plus tard et transform en lectricit selon la demande. Plu- sieurs projets denvergure sont actuellement en cours ou en projets dans les alpes. Il sagit dune technologie prouve avec une longue dure de vie et une cyclabilit illimite, mais elle soulve des questions au niveau de la prservation du paysage et la protection des cours deau. Le stockage thermique de leau fournit le moyen le moins cher et le plus adapt pour le stockage de la cha- leur. Les cots du stockage court terme voire saisonnier de lnergie sont faibles. Les panneaux solaires thermiques coupls un rservoir deau utilis comme accumulateur thermique ont fait leur preuve dans le chauffage dun btiment et son approvisionnement en eau chaude sanitaire. Cette technique prsente lavantage dune cyclabilit illimite, dune disponibilit suffisante des matires premires pour la fabrication de linstallation ainsi quune longue dure de vie. Quand les pertes thermiques de laccumulateur sont utilises, cette nergie peut atteindre un haut rendement jusqu pratiquement 100%. Les autres formes de stockage de lnergie comme lnergie cintique, lair comprim, la production dhydrogne, lutilisation de la chaleur latente, etc. ont encore un grand besoin de dveloppement et ont peu de potentiel physique ou sont par ailleurs peu adaptes. Cest pourquoi elles restent du domaine de lutopie . En ltat actuelle des connaissances, la production dhydrogne par du solaire thermique semble la technique la plus envisageable pour le stockage saisonnier de lnergie, la condition que le prix de lnergie soit plus lev quaujourdhui. De plus, le rendement global est relativement faible. Dans le cadre de la transition nergtique, il est important de savoir que llectricit ne reprsente que 24% de la consomma- tion totale dnergie en suisse. Lnergie nest pas seulement de llectricit. Llectricit est une nergie noble, c.--d. quelle rsulte de la transformation d'une autre forme d'nergie comme la chaleur ou le mouvement. Pour rduire la dpendance llectricit, des alternatives doivent tre utilises. Par exemple, au lieu dquiper une habitation dune pompe chaleur aliment lectriquement, il est possible de la chauffer directement en nergie thermique sans autre transformation dnergie (installation de panneaux solaires thermiques). Le bois peut aussi tre utilis comme stock dnergie pour une utilisation dcentralise. Ce- pendant il est important que celui-ci soit utilis uniquement lorsque les autres sources dnergies renouvelables ne sont pas disponibles et quil ny ait pas de surexploitation des forts. 90. Vue densemble de diffrentes technologies de stockage Stockage court terme: Du jour la nuit 1 3 jours Stockage moyen terme: Fin dune priode de beau la prochaine priode 10 30 jours Stockage saisonnier: Du printemps lhivers 100 jours Technologies Capacit de stockage kWh par m3 Prix CHF par m3 Prix CHF par kWh de capacit de stockage Prix de lnergie Pour une saison de stockage CHF par kWh Disponibilit de la ressource Cycles de charges Durabilit en annes Electricit Batterie Lithium-Ion 400 160`000.-- 400.-- 40.-- Trs critique 500 1000 5 10 Batterie au plomb 125 15`000.-- 150.-- 20.-- Trs critique 500 1000 5 10 Barrages Pompage- turbinage 2.7 (Hauteur de chute 1000 m) 135.-- 50.-- 0.50 Bonne illimit > 100 Thermique Eau Accumulateur thermique (citerne dacier) 70 (pour Delta T 60C) 500.-- 7.-- 0.10 Bonne illimit 75 Les chiffres donns sont des valeurs actuelles relatives au stockage effectif bas sur un volume de stockage de 1m (prix de gros net). Les cots ne se rapportent quau prix du stockage dnergie (sans linfrastructure ncessaire ni les systmes de transformation) et sont donns titre indicatif. Les cots peuvent varier fortement, en particulier pour les batteries, en fonction du progrs technologique mais aussi des pnuries de matire premires, de laugmentation de la demande, etc. Les rende- ments de cycles charge-dcharge sont de de lordre de 60 90% et sont galement dpendant de la batterie comme de lintensit de la charge ou de la dcharge, ce qui peut raccourcir considrablement lesprance de vie des batteries. Conclusion: La capacit de stocker temporairement lnergie pour une utilisation lors dune phase de faible production doit tre massive- ment augmente. Pour une mise en uvre russie de la transition nergtique, des technologies de stockage cologiques prouves et abordables sont ncessaires. Seul des batteries permettent un stockage local de lnergie lectrique. En tenant compte des conditions actuelles (impact sur lenvironnement, les besoins en ressources, la dure de vie, la cyclabilit, les cots), cette ide parat absurde et avec un poten- tiel trs limit. La seule faon envisageable actuellement pour stocker llectricit renouvelable et ainsi utiliser les pics de pro- ductions, consiste construire de grandes centrales de pompage-turbinage. En outre, notre avis les installations solaires thermiques avec accumulation sont une technologie respectant lenvironnement comme la disponibilit des ressources ainsi que la prservation du paysage. Dans cette courte prsentation, il ntait pas possible de prsenter toutes les possibilits de stockage de lnergie. Nous vou- lions seulement montrer ce qui est faisable et ce qui appartient au domaine des dsirs et des illusions. Josef Jenni / Jenni Energietechnik AG / T +41 34 420 30 00 / www.jenni.ch Traduit par Patrice Pasquier pour Sebasol, septembre 2013 Sebasol c/o Pascal Cretton Aloys-Fauquez 6, 1018 Lausanne, Suisse T +41 21 311 37 42 F +41 86 21 311 37 42 [email protected] www.sebasol.ch Il nexiste pas de baguette ma- gique pour avoir de lnergie juste au bon moment ! 91. COSSECO SA, Route de Pra de Plan 5 1618 Chtel-St-Denis Tl : + 41 21 948 81 70, e-mail : [email protected] Lefficacit Energtique matrise Solarline: solution solaire hybride de chauffage, ECS et climatisation10. Annexes COSSECO 92. Institut ENERGY Solutions hybrides de Pompes Chaleur Gnie mcaniqe Rapport technique et conomique 1 Bilan nergtique RUIDA Rapport Bilan nergtique et conomique du systme de chauffage du btiment RUIDA SA Chtel-St-Denis (CH) Rdig par Nicolas Huguelet Co-rdig par Peter Kurmann Sous la direction de Dr. Elena-Lavinia Niederhuser Option Gnie mcanique Mandant Cosseco, Rte de la Pra de Plan, 1618 Chtel-St-Denis Date 17 janvier 2014 93. Institut ENERGY Solutions hybrides de Pompes Chaleur Gnie mcaniqe Rapport technique et conomique 2 Bilan nergtique RUIDA i Table des matires i Table des matires ............................................................................................ 1 1 Introduction ........................................................................................................ 3 1.1 Lentreprise COSSECO ......................................................................................................................3 1.1.1 Technologie Solarline [1] ..........................................................................................................3 1.2 Objectifs du Chque Cleantech ..........................................................................................................5 1.3 Contenu du prsent rapport ................................................................................................................5 2 Prsentation de linstallation de chauffage ........................................................ 6 2.1 Schma de linstallation ......................................................................................................................7 3 Bilan nergtique............................................................................................... 8 3.1 Bilan thermique ...................................................................................................................................8 3.2 Bilan de linstallation de chauffage......................................................................................................9 3.2.1 Bilan de la PAC.......................................................................................................................12 3.2.2 Bilan de linstallation globale...................................................................................................13 3.2.3 Rsultats.................................................................................................................................15 3.3 Comparaison des besoins.................................................................................................................16 4 Bilan conomique ............................................................................................18 4.1 Consommations ................................................................................................................................18 4.2 Comparaison avec une installation classique (mazout)....................................................................19 4.3 Comparaison installation classique (PAC) avec SOLARLINE..........................................................20 4.4 Synthse du bilan conomique.........................................................................................................21 5 Conclusion .......................................................................................................22 6 Bibliographie et sources ..................................................................................23 94. Institut ENERGY Solutions hybrides de Pompes Chaleur Gnie mcaniqe Rapport technique et conomique 3 Bilan nergtique RUIDA 1 Introduction 1.1 Lentreprise COSSECO COSSECO est une entreprise base Chtel-St-Denis qui met en uvre des solutions hybrides de Pompes Chaleur. Elle possde sa propre technologie de rgulation qui permet daugmenter de manire significative les performances dune installation de chauffage : Solarline. 1.1.1 Technologie Solarline [1] Solarline est cr autour dun concept conomique et cologique : auto-consommer un maximum dnergie produite par les panneaux Solaires Photovoltaques. Pour atteindre ce but, COSSECO a dvelopp un systme de rgulation unique qui permet de tirer parti de chaque kW produit par linstallation photovoltaque qui lui est relie. De plus, afin dabsorber les variations journalires de production photovoltaques, COSSECO utilise des ballons de stockage deau chauffe (ou refroidie, pour le rafraichissement en t) afin daligner la production solaire photovoltaque avec la consommation. Schma de principe de fonctionnement de Solarline : Figure 1 - Principe de fonctionnement de Solarline 95. Institut ENERGY Solutions hybrides de Pompes Chaleur Gnie mcaniqe Rapport technique et conomique 4 Bilan nergtique RUIDA Fonctionnement en rgime nominal Lapport solaire de la journe couvre tous les besoins : chauffage / rafraichissement et Eau Chaude Sanitaire. Le surplus dnergie produit par les panneaux photovoltaques est alors converti par la PAC en eau chaude / froide et est stock dans des ballons pendant le jour puis diffus pendant la nuit. Le stockage sous forme deau chauffe / refroidie est plus conomique et moins polluant que les solutions de stockage de lnergie par des batteries. Fonctionnement avec de forts besoins Si lapport solaire photovoltaque ne couvre pas tous les besoins, la solution Solarline prend un apport du rseau lectrique pour conserver le btiment la temprature demande. De plus, si le tarif lectrique est plus favorable la nuit, alors Solarline peut chauffer de l